Your browser doesn't support javascript.
loading
Fish TRIM16L exerts negative regulation on antiviral immune response against grouper iridoviruses.
Yu, Yepin; Huang, Xiaohong; Zhang, Jingcheng; Liu, Jiaxi; Hu, Yin; Yang, Ying; Cai, Jia; Huang, Youhua; Qin, Qiwei.
Afiliación
  • Yu Y; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy o
  • Huang X; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy o
  • Zhang J; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy o
  • Liu J; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy o
  • Hu Y; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy o
  • Yang Y; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy o
  • Cai J; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy o
  • Huang Y; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy o
  • Qin Q; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy o
Fish Shellfish Immunol ; 59: 256-267, 2016 Dec.
Article en En | MEDLINE | ID: mdl-27815200
ABSTRACT
Tripartite motif 16 (TRIM16), has been demonstrated to act as a tumor suppressor through affecting cell proliferation and migration or tumorigenicity in carcigenesis. However, the roles of TRIM16 in immune response were unknown up to now. Here, we cloned a TRIM16-like gene (TRIM16L) from orange spotted grouper (EcTRIM16L) and investigated its roles in response to virus infection. EcTRIM16L encoded a 478 amino acid peptide which showed 72% and 29% identity to large yellow croaker (Larimichthys crocea) and human (Homo sapiens), respectively. Sequence alignments indicated that EcTRIM16L shared the different gene structures with human TRIM16, evidenced by the presence of RING domain, but absence of the B-box domain. In transfected grouper cells, the green fluorescence mainly distributed in cytoplasm, and the deletion of SPRY domain affected the accurate localization of EcTRIM16L. In response to different stimuli, including infection with Singapore grouper iridovirus (SGIV) or red-spotted grouper nervous necrosis (RGNNV), and transfection with b-DNA or poly IC, the transcript of EcTRIM16L were differently regulated in grouper spleen cells. After incubation with SGIV, the ectopic expression of EcTRIM16L significantly enhanced the viral replication, demonstrated by the increase of cytopathic effect (CPE) severity and viral gene transcriptions. Simultaneously, we also found that overexpression of EcTIRM16L in vitro significantly weakened the expression of interferon related molecules, including interferon regulatory factor 3 (IRF3), IRF7, and melanoma differentiation-associated protein 5 (MDA5). Moreover, the ectopic expression of EcTRIM16L significantly decreased both MDA5-and mediator of IRF3 activation (MITA)-induced interferon immune responses. Further studies showed that the RING domain played more important roles in the molecular action of EcTIRM16L during grouper virus infection. Our data, for the first time, demonstrated that fish TRIM16L exerted negative regulation on the interferon immune response against DNA virus infection.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Lubina / Infecciones por Virus ADN / Enfermedades de los Peces / Proteínas de Motivos Tripartitos / Inmunidad Innata Límite: Animals Idioma: En Revista: Fish Shellfish Immunol Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Lubina / Infecciones por Virus ADN / Enfermedades de los Peces / Proteínas de Motivos Tripartitos / Inmunidad Innata Límite: Animals Idioma: En Revista: Fish Shellfish Immunol Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2016 Tipo del documento: Article