Your browser doesn't support javascript.
loading
Enhanced bone formation in sheep vertebral bodies after minimally invasive treatment with a novel, PLGA fiber-reinforced brushite cement.
Maenz, Stefan; Brinkmann, Olaf; Kunisch, Elke; Horbert, Victoria; Gunnella, Francesca; Bischoff, Sabine; Schubert, Harald; Sachse, Andre; Xin, Long; Günster, Jens; Illerhaus, Bernhard; Jandt, Klaus D; Bossert, Jörg; Kinne, Raimund W; Bungartz, Matthias.
Afiliación
  • Maenz S; Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena D-07743, Germany.
  • Brinkmann O; Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisenberg D-07607, Germany; Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisen
  • Kunisch E; Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisenberg D-07607, Germany.
  • Horbert V; Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisenberg D-07607, Germany.
  • Gunnella F; Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisenberg D-07607, Germany.
  • Bischoff S; Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Dornburger Str. 23, Jena D-07743, Germany.
  • Schubert H; Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Dornburger Str. 23, Jena D-07743, Germany.
  • Sachse A; Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisenberg D-07607, Germany.
  • Xin L; Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisenberg D-07607, Germany.
  • Günster J; Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, Berlin D-12205, Germany.
  • Illerhaus B; Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, Berlin D-12205, Germany.
  • Jandt KD; Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena D-07743, Germany.
  • Bossert J; Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena D-07743, Germany.
  • Kinne RW; Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisenberg D-07607, Germany. Electronic address: raimund.w.kinne@med.uni-jena.de.
  • Bungartz M; Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisenberg D-07607, Germany; Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, Eisen
Spine J ; 17(5): 709-719, 2017 05.
Article en En | MEDLINE | ID: mdl-27871820
ABSTRACT
BACKGROUND CONTEXT Injectable, brushite-forming calcium phosphate cements (CPC) show potential for bone replacement, but they exhibit low mechanical strength. This study tested a CPC reinforced with poly(l-lactide-co-glycolide) acid (PLGA) fibers in a minimally invasive, sheep lumbar vertebroplasty model.

PURPOSE:

The study aimed to test the in vivo biocompatibility and osteogenic potential of a PLGA fiber-reinforced, brushite-forming CPC in a sheep large animal model. STUDY DESIGN/

SETTING:

This is a prospective experimental animal study.

METHODS:

Bone defects (diameter 5 mm) were placed in aged, osteopenic female sheep, and left empty (L2) or injected with pure CPC (L3) or PLGA fiber-reinforced CPC (L4; fiber diameter 25 µm; length 1 mm; 10% [wt/wt]). Three and 9 months postoperation (n=20 each), the structural and functional CPC effects on bone regeneration were documented ex vivo by osteodensitometry, histomorphometry, micro-computed tomography (micro-CT), and biomechanical testing.

RESULTS:

Addition of PLGA fibers enhanced CPC osteoconductivity and augmented bone formation. This was demonstrated by (1) significantly enhanced structural (bone volume/total volume, shown by micro-CT and histomorphometry; 3 or 9 months) and bone formation parameters (osteoid volume and osteoid surface; 9 months); (2) numerically enhanced bone mineral density (3 and 9 months) and biomechanical compression strength (9 months); and (3) numerically decreased bone erosion (eroded surface; 3 and 9 months).

CONCLUSIONS:

The PLGA fiber-reinforced CPC is highly biocompatible and its PLGA fiber component enhanced bone formation. Also, PLGA fibers improve the mechanical properties of brittle CPC, with potential applicability in load-bearing areas.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteogénesis / Cementos para Huesos / Regeneración Ósea / Vertebroplastia Límite: Animals Idioma: En Revista: Spine J Asunto de la revista: ORTOPEDIA Año: 2017 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteogénesis / Cementos para Huesos / Regeneración Ósea / Vertebroplastia Límite: Animals Idioma: En Revista: Spine J Asunto de la revista: ORTOPEDIA Año: 2017 Tipo del documento: Article País de afiliación: Alemania