Your browser doesn't support javascript.
loading
Reproducible segmentation of white matter hyperintensities using a new statistical definition.
Damangir, Soheil; Westman, Eric; Simmons, Andrew; Vrenken, Hugo; Wahlund, Lars-Olof; Spulber, Gabriela.
Afiliación
  • Damangir S; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Hälsovägen 7, Huddinge, 14157, Stockholm, Sweden. soheil.damangir@ki.se.
  • Westman E; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Hälsovägen 7, Huddinge, 14157, Stockholm, Sweden.
  • Simmons A; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Hälsovägen 7, Huddinge, 14157, Stockholm, Sweden.
  • Vrenken H; Institute of Psychiatry, King's College London, Box P089, De Crespigny Park, London, SE5 8AF, UK.
  • Wahlund LO; Department of Physics and Medical Technology, VU University Medical Center, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands.
  • Spulber G; Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands.
MAGMA ; 30(3): 227-237, 2017 Jun.
Article en En | MEDLINE | ID: mdl-27943055
OBJECTIVES: We present a method based on a proposed statistical definition of white matter hyperintensities (WMH), which can work with any combination of conventional magnetic resonance (MR) sequences without depending on manually delineated samples. MATERIALS AND METHODS: T1-weighted, T2-weighted, FLAIR, and PD sequences acquired at 1.5 Tesla from 119 subjects from the Kings Health Partners-Dementia Case Register (healthy controls, mild cognitive impairment, Alzheimer's disease) were used. The segmentation was performed using a proposed definition for WMH based on the one-tailed Kolmogorov-Smirnov test. RESULTS: The presented method was verified, given all possible combinations of input sequences, against manual segmentations and a high similarity (Dice 0.85-0.91) was observed. Comparing segmentations with different input sequences to one another also yielded a high similarity (Dice 0.83-0.94) that exceeded intra-rater similarity (Dice 0.75-0.91). We compared the results with those of other available methods and showed that the segmentation based on the proposed definition has better accuracy and reproducibility in the test dataset used. CONCLUSION: Overall, the presented definition is shown to produce accurate results with higher reproducibility than manual delineation. This approach can be an alternative to other manual or automatic methods not only because of its accuracy, but also due to its good reproducibility.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Encéfalo / Reconocimiento de Normas Patrones Automatizadas / Leucoencefalopatías / Imagen de Difusión Tensora / Sustancia Blanca Tipo de estudio: Diagnostic_studies / Evaluation_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: MAGMA Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2017 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Encéfalo / Reconocimiento de Normas Patrones Automatizadas / Leucoencefalopatías / Imagen de Difusión Tensora / Sustancia Blanca Tipo de estudio: Diagnostic_studies / Evaluation_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: MAGMA Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2017 Tipo del documento: Article País de afiliación: Suecia