Your browser doesn't support javascript.
loading
Coordination between Intra- and Extracellular Forces Regulates Focal Adhesion Dynamics.
Sarangi, Bibhu Ranjan; Gupta, Mukund; Doss, Bryant L; Tissot, Nicolas; Lam, France; Mège, René-Marc; Borghi, Nicolas; Ladoux, Benoît.
Afiliación
  • Sarangi BR; Institut Jacques Monod (IJM), CNRS UMR 7592 and University Paris Diderot , Paris, France.
  • Gupta M; SRM Research Institute and Department of Physics & Nanotechnology, SRM University , Kattankulathur, India.
  • Doss BL; Mechanobiology Institute (MBI), National University of Singapore , Singapore.
  • Tissot N; Mechanobiology Institute (MBI), National University of Singapore , Singapore.
  • Lam F; Institut Jacques Monod (IJM), CNRS UMR 7592 and University Paris Diderot , Paris, France.
  • Mège RM; Institut Jacques Monod (IJM), CNRS UMR 7592 and University Paris Diderot , Paris, France.
  • Borghi N; Institut Jacques Monod (IJM), CNRS UMR 7592 and University Paris Diderot , Paris, France.
  • Ladoux B; Institut Jacques Monod (IJM), CNRS UMR 7592 and University Paris Diderot , Paris, France.
Nano Lett ; 17(1): 399-406, 2017 01 11.
Article en En | MEDLINE | ID: mdl-27990827
ABSTRACT
Focal adhesions (FAs) are important mediators of cell-substrate interactions. One of their key functions is the transmission of forces between the intracellular acto-myosin network and the substrate. However, the relationships between cell traction forces, FA architecture, and molecular forces within FAs are poorly understood. Here, by combining Förster resonance energy transfer (FRET)-based molecular force biosensors with micropillar-based traction force sensors and high-resolution fluorescence microscopy, we simultaneously map molecular tension across vinculin, a key protein in FAs, and traction forces at FAs. Our results reveal strong spatiotemporal correlations between vinculin tension and cell traction forces at FAs throughout a wide range of substrate stiffnesses. Furthermore, we find that molecular tension within individual FAs follows a biphasic distribution from the proximal (toward the cell nucleus) to distal end (toward the cell edge). Using super-resolution imaging, we show that such a distribution relates to that of FA proteins. On the basis of our experimental data, we propose a model in which FA dynamics results from tension changes along the FAs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2017 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2017 Tipo del documento: Article País de afiliación: Francia