Estimating monotonic rates from biological data using local linear regression.
J Exp Biol
; 220(Pt 5): 759-764, 2017 03 01.
Article
en En
| MEDLINE
| ID: mdl-28049626
Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Consumo de Oxígeno
/
Metabolismo Basal
/
Aves
/
Simulación por Computador
/
Briozoos
/
Modelos Lineales
/
Modelos Biológicos
Límite:
Animals
Idioma:
En
Revista:
J Exp Biol
Año:
2017
Tipo del documento:
Article
País de afiliación:
Australia