Your browser doesn't support javascript.
loading
Transferase Versus Hydrolase: The Role of Conformational Flexibility in Reaction Specificity.
Light, Samuel H; Cahoon, Laty A; Mahasenan, Kiran V; Lee, Mijoon; Boggess, Bill; Halavaty, Andrei S; Mobashery, Shahriar; Freitag, Nancy E; Anderson, Wayne F.
Afiliación
  • Light SH; Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
  • Cahoon LA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.
  • Mahasenan KV; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
  • Lee M; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
  • Boggess B; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
  • Halavaty AS; Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
  • Mobashery S; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
  • Freitag NE; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.
  • Anderson WF; Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. Electronic address: wf-anderson@northwestern.edu.
Structure ; 25(2): 295-304, 2017 02 07.
Article en En | MEDLINE | ID: mdl-28089449
ABSTRACT
Active in the aqueous cellular environment where a massive excess of water is perpetually present, enzymes that catalyze the transfer of an electrophile to a non-water nucleophile (transferases) require specific strategies to inhibit mechanistically related hydrolysis reactions. To identify principles that confer transferase versus hydrolase reaction specificity, we exploited two enzymes that use highly similar catalytic apparatuses to catalyze the transglycosylation (a transferase reaction) or hydrolysis of α-1,3-glucan linkages in the cyclic tetrasaccharide cycloalternan (CA). We show that substrate binding to non-catalytic domains and a conformationally stable active site promote CA transglycosylation, whereas a distinct pattern of active site conformational change is associated with CA hydrolysis. These findings defy the classic view of induced-fit conformational change and illustrate a mechanism by which a stable hydrophobic binding site can favor transferase activity and disfavor hydrolysis. Application of these principles could facilitate the rational reengineering of transferases with desired catalytic properties.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oligosacáridos / Actinomycetales / Agua / Glucosidasas / Glicósido Hidrolasas / Listeria monocytogenes Tipo de estudio: Prognostic_studies Idioma: En Revista: Structure Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / BIOTECNOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oligosacáridos / Actinomycetales / Agua / Glucosidasas / Glicósido Hidrolasas / Listeria monocytogenes Tipo de estudio: Prognostic_studies Idioma: En Revista: Structure Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / BIOTECNOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos