Your browser doesn't support javascript.
loading
Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening.
Willemsen, Joschka; Wicht, Oliver; Wolanski, Julia C; Baur, Nina; Bastian, Sandra; Haas, Darya A; Matula, Petr; Knapp, Bettina; Meyniel-Schicklin, Laurène; Wang, Chen; Bartenschlager, Ralf; Lohmann, Volker; Rohr, Karl; Erfle, Holger; Kaderali, Lars; Marcotrigiano, Joseph; Pichlmair, Andreas; Binder, Marco.
Afiliación
  • Willemsen J; Research Group "Dynamics of early viral infection and the innate antiviral response," Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Infectious Diseases, Molecular Virology, Research Group "Dynamics of early viral infe
  • Wicht O; Department for Infectious Diseases, Molecular Virology, Research Group "Dynamics of early viral infection and the innate antiviral response," Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany.
  • Wolanski JC; Research Group "Dynamics of early viral infection and the innate antiviral response," Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
  • Baur N; Department for Infectious Diseases, Molecular Virology, Research Group "Dynamics of early viral infection and the innate antiviral response," Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany.
  • Bastian S; Research Group "Dynamics of early viral infection and the innate antiviral response," Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
  • Haas DA; Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
  • Matula P; Biomedical Computer Vision Group, BioQuant, IPMB, and German Cancer Research Center (DKFZ), Department of Bioinformatics and Functional Genomics, Heidelberg University, 69120 Heidelberg, Germany; Center for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Repu
  • Knapp B; ViroQuant Research Group Modeling, BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
  • Meyniel-Schicklin L; ENYO Pharma, 69007 Lyon, France.
  • Wang C; Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
  • Bartenschlager R; Department for Infectious Diseases, Molecular Virology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany.
  • Lohmann V; Department for Infectious Diseases, Molecular Virology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany.
  • Rohr K; Biomedical Computer Vision Group, BioQuant, IPMB, and German Cancer Research Center (DKFZ), Department of Bioinformatics and Functional Genomics, Heidelberg University, 69120 Heidelberg, Germany.
  • Erfle H; ViroQuant-CellNetworks RNAi Screening Facility, BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
  • Kaderali L; ViroQuant Research Group Modeling, BioQuant, Heidelberg University, 69120 Heidelberg, Germany; Institute for Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany.
  • Marcotrigiano J; Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
  • Pichlmair A; Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
  • Binder M; Research Group "Dynamics of early viral infection and the innate antiviral response," Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Infectious Diseases, Molecular Virology, Research Group "Dynamics of early viral infe
Mol Cell ; 65(3): 403-415.e8, 2017 Feb 02.
Article en En | MEDLINE | ID: mdl-28132841
ABSTRACT
Cell-autonomous induction of type I interferon must be stringently regulated. Rapid induction is key to control virus infection, whereas proper limitation of signaling is essential to prevent immunopathology and autoimmune disease. Using unbiased kinome-wide RNAi screening followed by thorough validation, we identified 22 factors that regulate RIG-I/IRF3 signaling activity. We describe a negative-feedback mechanism targeting RIG-I activity, which is mediated by death associated protein kinase 1 (DAPK1). RIG-I signaling triggers DAPK1 kinase activation, and active DAPK1 potently inhibits RIG-I stimulated IRF3 activity and interferon-beta production. DAPK1 phosphorylates RIG-I in vitro at previously reported as well as other sites that limit 5'ppp-dsRNA sensing and virtually abrogate RIG-I activation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores de Ácido Retinoico / ARN Interferente Pequeño / Proteínas Quinasas Asociadas a Muerte Celular Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Animals / Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores de Ácido Retinoico / ARN Interferente Pequeño / Proteínas Quinasas Asociadas a Muerte Celular Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Animals / Humans Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article