Your browser doesn't support javascript.
loading
Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species.
Tan, Samuel; Barrera Acevedo, Santiago; Izgorodina, Ekaterina I.
Afiliación
  • Tan S; Monash Computational Chemistry Group, School of Chemistry, Monash University, 17 Rainforest Walk, Clayton VIC 3800, Australia.
  • Barrera Acevedo S; School of Mathematical Sciences, Monash University, 9 Rainforest Walk, Clayton VIC 3800, Australia.
  • Izgorodina EI; Monash Computational Chemistry Group, School of Chemistry, Monash University, 17 Rainforest Walk, Clayton VIC 3800, Australia.
J Chem Phys ; 146(6): 064108, 2017 Feb 14.
Article en En | MEDLINE | ID: mdl-28201921
ABSTRACT
The accurate calculation of intermolecular interactions is important to our understanding of properties in large molecular systems. The high computational cost of the current "gold standard" method, coupled cluster with singles and doubles and perturbative triples (CCSD(T), limits its application to small- to medium-sized systems. Second-order Møller-Plesset perturbation (MP2) theory is a cheaper alternative for larger systems, although at the expense of its decreased accuracy, especially when treating van der Waals complexes. In this study, a new modification of the spin-component scaled MP2 method was proposed for a wide range of intermolecular complexes including two well-known datasets, S22 and S66, and a large dataset of ionic liquids consisting of 174 single ion pairs, IL174. It was found that the spin ratio, ϵΔs=EINTOSEINTSS, calculated as the ratio of the opposite-spin component to the same-spin component of the interaction correlation energy fell in the range of 0.1 and 1.6, in contrast to the range of 3-4 usually observed for the ratio of absolute correlation energy, ϵs=EOSESS, in individual molecules. Scaled coefficients were found to become negative when the spin ratio fell in close proximity to 1.0, and therefore, the studied intermolecular complexes were divided into two groups (1) complexes with ϵΔs< 1 and (2) complexes with ϵΔs≥ 1. A separate set of coefficients was obtained for both groups. Exclusion of counterpoise correction during scaling was found to produce superior results due to decreased error. Among a series of Dunning's basis sets, cc-pVTZ and cc-pVQZ were found to be the best performing ones, with a mean absolute error of 1.4 kJ mol-1 and maximum errors below 6.2 kJ mol-1. The new modification, spin-ratio scaled second-order Møller-Plesset perturbation, treats both dispersion-driven and hydrogen-bonded complexes equally well, thus validating its robustness with respect to the interaction type ranging from ionic to neutral species at minimal computational cost.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Phys Año: 2017 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Phys Año: 2017 Tipo del documento: Article País de afiliación: Australia