Your browser doesn't support javascript.
loading
Neuronal hyperactivity causes Na+/H+ exchanger-induced extracellular acidification at active synapses.
Chiacchiaretta, Martina; Latifi, Shahrzad; Bramini, Mattia; Fadda, Manuela; Fassio, Anna; Benfenati, Fabio; Cesca, Fabrizia.
Afiliación
  • Chiacchiaretta M; Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.
  • Latifi S; Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy.
  • Bramini M; Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.
  • Fadda M; Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.
  • Fassio A; Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy.
  • Benfenati F; Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.
  • Cesca F; Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy.
J Cell Sci ; 130(8): 1435-1449, 2017 04 15.
Article en En | MEDLINE | ID: mdl-28254883
ABSTRACT
Extracellular pH impacts on neuronal activity, which is in turn an important determinant of extracellular H+ concentration. The aim of this study was to describe the spatio-temporal dynamics of extracellular pH at synaptic sites during neuronal hyperexcitability. To address this issue we created ex.E2GFP, a membrane-targeted extracellular ratiometric pH indicator that is exquisitely sensitive to acidic shifts. By monitoring ex.E2GFP fluorescence in real time in primary cortical neurons, we were able to quantify pH fluctuations during network hyperexcitability induced by convulsant drugs or high-frequency electrical stimulation. Sustained hyperactivity caused a pH decrease that was reversible upon silencing of neuronal activity and located at active synapses. This acidic shift was not attributable to the outflow of synaptic vesicle H+ into the cleft nor to the activity of membrane-exposed H+ V-ATPase, but rather to the activity of the Na+/H+-exchanger. Our data demonstrate that extracellular synaptic pH shifts take place during epileptic-like activity of neural cultures, emphasizing the strict links existing between synaptic activity and synaptic pH. This evidence may contribute to the understanding of the physio-pathological mechanisms associated with hyperexcitability in the epileptic brain.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Corteza Cerebelosa / Intercambiadores de Sodio-Hidrógeno / Epilepsia / Sinapsis Eléctricas / Neuronas Tipo de estudio: Etiology_studies Límite: Animals / Humans Idioma: En Revista: J Cell Sci Año: 2017 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Corteza Cerebelosa / Intercambiadores de Sodio-Hidrógeno / Epilepsia / Sinapsis Eléctricas / Neuronas Tipo de estudio: Etiology_studies Límite: Animals / Humans Idioma: En Revista: J Cell Sci Año: 2017 Tipo del documento: Article País de afiliación: Italia