Similarities in the structure of the transcriptional repressor AmtR in two different space groups suggest a model for the interaction with GlnK.
Acta Crystallogr F Struct Biol Commun
; 73(Pt 3): 146-151, 2017 03 01.
Article
en En
| MEDLINE
| ID: mdl-28291750
AmtR belongs to the TetR family of transcription regulators and is a global nitrogen regulator that is induced under nitrogen-starvation conditions in Corynebacterium glutamicum. AmtR regulates the expression of transporters and enzymes for the assimilation of ammonium and alternative nitrogen sources, for example urea, amino acids etc. The recognition of operator DNA by homodimeric AmtR is not regulated by small-molecule effectors as in other TetR-family members but by a trimeric adenylylated PII-type signal transduction protein named GlnK. The crystal structure of ligand-free AmtR (AmtRorth) has been solved at a resolution of 2.1â
Å in space group P21212. Comparison of its quaternary assembly with the previously solved native AmtR structure (PDB entry 5dy1) in a trigonal crystal system (AmtRtri) not only shows how a solvent-content reduction triggers a space-group switch but also suggests a model for how dimeric AmtR might stoichiometrically interact with trimeric adenylylated GlnK.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Proteínas Represoras
/
Proteínas Bacterianas
/
Corynebacterium glutamicum
/
Proteínas PII Reguladoras del Nitrógeno
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Acta Crystallogr F Struct Biol Commun
Año:
2017
Tipo del documento:
Article
País de afiliación:
Alemania