Your browser doesn't support javascript.
loading
Automatic Echographic Detection of Halloysite Clay Nanotubes in a Low Concentration Range.
Conversano, Francesco; Pisani, Paola; Casciaro, Ernesto; Di Paola, Marco; Leporatti, Stefano; Franchini, Roberto; Quarta, Alessandra; Gigli, Giuseppe; Casciaro, Sergio.
Afiliación
  • Conversano F; National Research Council, Institute of Clinical Physiology, Lecce 73100, Italy. conversano@ifc.cnr.it.
  • Pisani P; National Research Council, Institute of Clinical Physiology, Lecce 73100, Italy. pisanip@ifc.cnr.it.
  • Casciaro E; National Research Council, Institute of Clinical Physiology, Lecce 73100, Italy. ernesto.casciaro@ifc.cnr.it.
  • Di Paola M; National Research Council, Institute of Clinical Physiology, Lecce 73100, Italy. m.dipaola@ifc.cnr.it.
  • Leporatti S; National Research Council, Institute of Nanotechnology, Lecce 73100, Italy. stefano.leporatti@nanotec.cnr.it.
  • Franchini R; National Research Council, Institute of Clinical Physiology, Lecce 73100, Italy. rfranchini@ifc.cnr.it.
  • Quarta A; National Research Council, Institute of Nanotechnology, Lecce 73100, Italy. alessandra.quarta@nanotec.cnr.it.
  • Gigli G; National Research Council, Institute of Nanotechnology, Lecce 73100, Italy. giuseppe.gigli@nanotec.cnr.it.
  • Casciaro S; National Research Council, Institute of Clinical Physiology, Lecce 73100, Italy. sergio.casciaro@cnr.it.
Nanomaterials (Basel) ; 6(4)2016 Apr 11.
Article en En | MEDLINE | ID: mdl-28335194
ABSTRACT
Aim of this work was to investigate the automatic echographic detection of an experimental drug delivery agent, halloysite clay nanotubes (HNTs), by employing an innovative method based on advanced spectral analysis of the corresponding "raw" radiofrequency backscatter signals. Different HNT concentrations in a low range (5.5-66 × 1010 part/mL, equivalent to 0.25-3.00 mg/mL) were dispersed in custom-designed tissue-mimicking phantoms and imaged through a clinically-available echographic device at a conventional ultrasound diagnostic frequency (10 MHz). The most effective response (sensitivity = 60%, specificity = 95%), was found at a concentration of 33 × 1010 part/mL (1.5 mg/mL), representing a kind of best compromise between the need of enough particles to introduce detectable spectral modifications in the backscattered signal and the necessity to avoid the losses of spectral peculiarity associated to higher HNT concentrations. Based on theoretical considerations and quantitative comparisons with literature-available results, this concentration could also represent an optimal concentration level for the automatic echographic detection of different solid nanoparticles when employing a similar ultrasound frequency. Future dedicated studies will assess the actual clinical usefulness of the proposed approach and the potential of HNTs for effective theranostic applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nanomaterials (Basel) Año: 2016 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nanomaterials (Basel) Año: 2016 Tipo del documento: Article País de afiliación: Italia