Your browser doesn't support javascript.
loading
Phosphoethanolamine addition to the Heptose I of the Lipopolysaccharide modifies the inner core structure and has an impact on the binding of Polymyxin B to the Escherichia coli outer membrane.
Salazar, Javier; Alarcón, Mackarenna; Huerta, Jaime; Navarro, Belén; Aguayo, Daniel.
Afiliación
  • Salazar J; Universidad Andres Bello, Facultad de Ciencias Biológicas, Molecular Biophysics & Bioinformatics Group, Center for Bioinformatics and Integrative Biology (CBIB), República 239, Santiago, Chile.
  • Alarcón M; Universidad Andres Bello, Facultad de Ciencias Biológicas, Molecular Biophysics & Bioinformatics Group, Center for Bioinformatics and Integrative Biology (CBIB), República 239, Santiago, Chile.
  • Huerta J; Universidad Andres Bello, Facultad de Ciencias Biológicas, Molecular Biophysics & Bioinformatics Group, Center for Bioinformatics and Integrative Biology (CBIB), República 239, Santiago, Chile.
  • Navarro B; Universidad Andres Bello, Facultad de Ciencias Biológicas, Molecular Biophysics & Bioinformatics Group, Center for Bioinformatics and Integrative Biology (CBIB), República 239, Santiago, Chile.
  • Aguayo D; Universidad Andres Bello, Facultad de Ciencias Biológicas, Molecular Biophysics & Bioinformatics Group, Center for Bioinformatics and Integrative Biology (CBIB), República 239, Santiago, Chile; Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso, Chile. Electronic address: daniel
Arch Biochem Biophys ; 620: 28-34, 2017 04 15.
Article en En | MEDLINE | ID: mdl-28342805
ABSTRACT
Phosphoethanolamine (pEtN) decoration of E. coli Lipopolysaccharide (LPS) provides resistance to the antimicrobial Polymyxin B (PolB). While EptA and EptB enzymes catalyze the addition of pEtN to the Lipid A and Kdo (pEtN-Kdo-Lipid A), EptC catalyzes the pEtN addition to the Heptose I (pEtN-HeptI). In this study, we investigated the contribution of pEtN-HeptI to PolB resistance using eptA/eptB and eptC deficient E. coli K12 and its wild-type parent strains. These mutations were shown to decrease the antimicrobial activity of PolB on cells grown under pEtN-addition inducing conditions. Furthermore, the 1-N-phenylnapthylamine uptake assay revealed that in vivo PolB has a reduced OM-permeabilizing activity on the ΔeptA/eptB strain compared with the ΔeptC strain. In vitro, the changes in size and zeta potential of LPS-vesicles indicate that pEtN-HeptI reduce the PolB binding, but in a minor extent than pEtN-Kdo-Lipid A. Molecular dynamics analysis revealed the structural basis of the PolB resistance promoted by pEtN-HeptI, which generate a new hydrogen-bonding networks and a denser inner core region. Altogether, the experimental and theoretical assays shown herein indicate that pEtN-HeptI addition promote an LPS conformational rearrangement, that could act as a shield by hindering the accession of PolB to inner LPS-targets moieties.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimixina B / Membrana Celular / Escherichia coli / Etanolaminas / Heptosas / Lípido A Idioma: En Revista: Arch Biochem Biophys Año: 2017 Tipo del documento: Article País de afiliación: Chile

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polimixina B / Membrana Celular / Escherichia coli / Etanolaminas / Heptosas / Lípido A Idioma: En Revista: Arch Biochem Biophys Año: 2017 Tipo del documento: Article País de afiliación: Chile