Assembly of polymer micelles through the sol-gel transition for effective cancer therapy.
J Control Release
; 255: 258-269, 2017 06 10.
Article
en En
| MEDLINE
| ID: mdl-28456679
Photo-induced apoptosis-targeted chemotherapy (PIATC) was designed and characterized to propose a new protocol for improved chemotherapy. Intratumoral injection was selected as the mode of administration of the anticancer drug, doxorubicin (DOX). To extend the retention time of DOX at the tumor parenchyma, in-situ gel formation was induced through the sol-gel transition of the Pluronic NPs containing a prodrug of DOX or a photosensitizer. The prodrug (DEVD-S-DOX) was designed to be inactive with a peptide moiety (Aspartic acid-Glutamic acid-Valine-Aspartic acid: DEVD) linked to DOX and to be cleaved into free DOX by caspase-3 expressed with apoptosis. For reactive oxygen species (ROS)-mediated apoptosis, photo-irradiation with methylene blue (MB, photosensitizer) was utilized. The sol-gel transition of the Pluronic NPs containing reactive species, DEVD-S-DOX or MB, was examined by measuring the cloud point and the gel strength in response to temperature change. ROS-mediated apoptosis was observed by measuring the ROS and membrane integrity with induced apoptosis. The in vivo antitumor efficacy of PIATC was measured with a cardiotoxicity assay in tumor-bearing mice.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Fotoquimioterapia
/
Profármacos
/
Doxorrubicina
/
Fármacos Fotosensibilizantes
/
Poloxámero
/
Azul de Metileno
/
Antineoplásicos
Límite:
Animals
Idioma:
En
Revista:
J Control Release
Asunto de la revista:
FARMACOLOGIA
Año:
2017
Tipo del documento:
Article