Your browser doesn't support javascript.
loading
Guided self-organization and cortical plate formation in human brain organoids.
Lancaster, Madeline A; Corsini, Nina S; Wolfinger, Simone; Gustafson, E Hilary; Phillips, Alex W; Burkard, Thomas R; Otani, Tomoki; Livesey, Frederick J; Knoblich, Juergen A.
Afiliación
  • Lancaster MA; IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
  • Corsini NS; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
  • Wolfinger S; IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
  • Gustafson EH; IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
  • Phillips AW; IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
  • Burkard TR; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
  • Otani T; IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
  • Livesey FJ; IMP-Institute of Molecular Pathology, Vienna, Austria.
  • Knoblich JA; Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.
Nat Biotechnol ; 35(7): 659-666, 2017 Jul.
Article en En | MEDLINE | ID: mdl-28562594
ABSTRACT
Three-dimensional cell culture models have either relied on the self-organizing properties of mammalian cells or used bioengineered constructs to arrange cells in an organ-like configuration. While self-organizing organoids excel at recapitulating early developmental events, bioengineered constructs reproducibly generate desired tissue architectures. Here, we combine these two approaches to reproducibly generate human forebrain tissue while maintaining its self-organizing capacity. We use poly(lactide-co-glycolide) copolymer (PLGA) fiber microfilaments as a floating scaffold to generate elongated embryoid bodies. Microfilament-engineered cerebral organoids (enCORs) display enhanced neuroectoderm formation and improved cortical development. Furthermore, reconstitution of the basement membrane leads to characteristic cortical tissue architecture, including formation of a polarized cortical plate and radial units. Thus, enCORs model the distinctive radial organization of the cerebral cortex and allow for the study of neuronal migration. Our data demonstrate that combining 3D cell culture with bioengineering can increase reproducibility and improve tissue architecture.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Organoides / Prosencéfalo / Ingeniería de Tejidos / Neurogénesis / Células-Madre Neurales / Técnicas de Cultivo Celular por Lotes Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Austria

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Organoides / Prosencéfalo / Ingeniería de Tejidos / Neurogénesis / Células-Madre Neurales / Técnicas de Cultivo Celular por Lotes Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Austria