Coupled multiferroic domain switching in the canted conical spin spiral system Mn2GeO4.
Nat Commun
; 8: 15457, 2017 06 05.
Article
en En
| MEDLINE
| ID: mdl-28580933
Despite remarkable progress in developing multifunctional materials, spin-driven ferroelectrics featuring both spontaneous magnetization and electric polarization are still rare. Among such ferromagnetic ferroelectrics are conical spin spiral magnets with a simultaneous reversal of magnetization and electric polarization that is still little understood. Such materials can feature various multiferroic domains that complicates their study. Here we study the multiferroic domains in ferromagnetic ferroelectric Mn2GeO4 using neutron diffraction, and show that it features a double-Q conical magnetic structure that, apart from trivial 180o commensurate magnetic domains, can be described by ferromagnetic and ferroelectric domains only. We show unconventional magnetoelectric couplings such as the magnetic-field-driven reversal of ferroelectric polarization with no change of spin-helicity, and present a phenomenological theory that successfully explains the magnetoelectric coupling. Our measurements establish Mn2GeO4 as a conceptually simple multiferroic in which the magnetic-field-driven flop of conical spin spirals leads to the simultaneous reversal of magnetization and electric polarization.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Qualitative_research
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Japón