Your browser doesn't support javascript.
loading
Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data.
Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter.
Afiliación
  • Piccinini F; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Via Piero Maroncelli 40, 47014 Meldola (FC), Italy.
  • Balassa T; Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Temesvári körút 62, 6726 Szeged, Hungary.
  • Szkalisity A; Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Temesvári körút 62, 6726 Szeged, Hungary.
  • Molnar C; Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Temesvári körút 62, 6726 Szeged, Hungary.
  • Paavolainen L; Institute for Molecular Medicine Finland, University of Helsinki, Tukholmankatu 8, 00014 Helsinki, Finland.
  • Kujala K; Institute for Molecular Medicine Finland, University of Helsinki, Tukholmankatu 8, 00014 Helsinki, Finland.
  • Buzas K; Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Temesvári körút 62, 6726 Szeged, Hungary; University of Szeged, Faculty of Dentistry, Tisza Lajos körút 64, 6720 Szeged, Hungary.
  • Sarazova M; Insitute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
  • Pietiainen V; Institute for Molecular Medicine Finland, University of Helsinki, Tukholmankatu 8, 00014 Helsinki, Finland.
  • Kutay U; Insitute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
  • Smith K; KTH Royal Institute of Technology, School of Computer Science and Communication, Lindstedtsvägen 3, 10044 Stockholm, Sweden; Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden.
  • Horvath P; Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Temesvári körút 62, 6726 Szeged, Hungary; Institute for Molecular Medicine Finland, University of Helsinki, Tukholmankatu 8, 00014 Helsinki, Finland. Electronic address: horvath.peter@brc.mta.hu.
Cell Syst ; 4(6): 651-655.e5, 2017 06 28.
Article en En | MEDLINE | ID: mdl-28647475
High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador Límite: Humans Idioma: En Revista: Cell Syst Año: 2017 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador Límite: Humans Idioma: En Revista: Cell Syst Año: 2017 Tipo del documento: Article País de afiliación: Italia