Your browser doesn't support javascript.
loading
Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å.
Turonová, Beata; Schur, Florian K M; Wan, William; Briggs, John A G.
Afiliación
  • Turonová B; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
  • Schur FKM; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
  • Wan W; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
  • Briggs JAG; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany; Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK. Electronic address: jbriggs@mrc-lmb.cam.ac.uk.
J Struct Biol ; 199(3): 187-195, 2017 09.
Article en En | MEDLINE | ID: mdl-28743638
Cryo-electron tomography (cryo-ET) allows cellular ultrastructures and macromolecular complexes to be imaged in three-dimensions in their native environments. Cryo-electron tomograms are reconstructed from projection images taken at defined tilt-angles. In order to recover high-resolution information from cryo-electron tomograms, it is necessary to measure and correct for the contrast transfer function (CTF) of the microscope. Most commonly, this is performed using protocols that approximate the sample as a two-dimensional (2D) plane. This approximation accounts for differences in defocus and therefore CTF across the tilted sample. It does not account for differences in defocus of objects at different heights within the sample; instead, a 3D approach is required. Currently available approaches for 3D-CTF correction are computationally expensive and have not been widely implemented. Here we simulate the benefits of 3D-CTF correction for high-resolution subtomogram averaging, and present a user-friendly, computationally-efficient 3D-CTF correction tool, NovaCTF, that is compatible with standard tomogram reconstruction workflows in IMOD. We validate the approach on synthetic data and test it using subtomogram averaging of real data. Consistent with our simulations, we find that 3D-CTF correction allows high-resolution structures to be obtained with much smaller subtomogram averaging datasets than are required using 2D-CTF. We also show that using equivalent dataset sizes, 3D-CTF correction can be used to obtain higher-resolution structures. We present a 3.4Å resolution structure determined by subtomogram averaging.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Microscopía por Crioelectrón / Flujo de Trabajo Tipo de estudio: Prognostic_studies Idioma: En Revista: J Struct Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Microscopía por Crioelectrón / Flujo de Trabajo Tipo de estudio: Prognostic_studies Idioma: En Revista: J Struct Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article País de afiliación: Alemania