How driving endonuclease genes can be used to combat pests and disease vectors.
BMC Biol
; 15(1): 81, 2017 09 11.
Article
en En
| MEDLINE
| ID: mdl-28893259
Driving endonuclease genes (DEGs) spread through a population by a non-Mendelian mechanism. In a heterozygote, the protein encoded by a DEG causes a double-strand break in the homologous chromosome opposite to where its gene is inserted and when the break is repaired using the homologue as a template the DEG heterozygote is converted to a homozygote. Some DEGs occur naturally while several classes of endonucleases can be engineered to spread in this way, with CRISPR-Cas9 based systems being particularly flexible. There is great interest in using driving endonuclease genes to impose a genetic load on insects that vector diseases or are economic pests to reduce their population density, or to introduce a beneficial gene such as one that might interrupt disease transmission. This paper reviews both the population genetics and population dynamics of DEGs. It summarises the theory that guides the design of DEG constructs intended to perform different functions. It also reviews the studies that have explored the likelihood of resistance to DEG phenotypes arising, and how this risk may be reduced. The review is intended for a general audience and mathematical details are kept to a minimum.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Control de Plagas
/
Control de Enfermedades Transmisibles
/
Marcación de Gen
/
Vectores de Enfermedades
/
Endonucleasas
/
Sistemas CRISPR-Cas
Límite:
Animals
Idioma:
En
Revista:
BMC Biol
Asunto de la revista:
BIOLOGIA
Año:
2017
Tipo del documento:
Article