Your browser doesn't support javascript.
loading
The Nutraceutic Silybin Counteracts Excess Lipid Accumulation and Ongoing Oxidative Stress in an In Vitro Model of Non-Alcoholic Fatty Liver Disease Progression.
Vecchione, Giulia; Grasselli, Elena; Cioffi, Federica; Baldini, Francesca; Oliveira, Paulo J; Sardão, Vilma A; Cortese, Katia; Lanni, Antonia; Voci, Adriana; Portincasa, Piero; Vergani, Laura.
Afiliación
  • Vecchione G; DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy.
  • Grasselli E; DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy.
  • Cioffi F; Department of Science and Technology, University of Sannio, Benevento, Italy.
  • Baldini F; DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy.
  • Oliveira PJ; Center for Neuroscience and Cellular Biology (CNC), University of Coimbra, Coimbra, Portugal.
  • Sardão VA; Center for Neuroscience and Cellular Biology (CNC), University of Coimbra, Coimbra, Portugal.
  • Cortese K; Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy.
  • Lanni A; Department of Science and Technology, University of Sannio, Benevento, Italy.
  • Voci A; DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy.
  • Portincasa P; Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
  • Vergani L; DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy.
Front Nutr ; 4: 42, 2017.
Article en En | MEDLINE | ID: mdl-28971098
ABSTRACT
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver-related morbidity and mortality. Oxidative stress and release of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), are major consequences of hepatic lipid overload, which can contribute to progression of NAFLD to non-alcoholic steatohepatitis (NASH). Also, mitochondria are involved in the NAFLD pathogenesis for their role in hepatic lipid metabolism. Definitive treatments for NAFLD/NASH are lacking so far. Silybin, the extract of the milk thistle seeds, has previously shown beneficial effects in NAFLD. Sequential exposure of hepatocytes to high concentrations of fatty acids (FAs) and TNFα resulted in fat overload and oxidative stress, which mimic in vitro the progression of NAFLD from simple steatosis (SS) to steatohepatitis (SH). The exposure to 50 µM silybin for 24 h reduced fat accumulation in the model of NAFLD progression. The in vitro progression of NAFLD from SS to SH resulted in reduced hepatocyte viability, increased apoptosis and oxidative stress, reduction in lipid droplet size, and up-regulation of IκB kinase ß-interacting protein and adipose triglyceride lipase expressions. The direct action of silybin on SS or SH cells and the underlying mechanisms were assessed. Beneficial action of silybin was sustained by changes in expression/activity of peroxisome proliferator-activated receptors and enzymes for FA oxidation. Moreover, silybin counteracted the FA-induced mitochondrial damage by acting on complementary pathways (i) increased the mitochondrial size and improved the mitochondrial cristae organization; (ii) stimulated mitochondrial FA oxidation; (iii) reduced basal and maximal respiration and ATP production in SH cells; (iv) stimulated ATP production in SS cells; and (v) rescued the FA-induced apoptotic signals and oxidative stress in SH cells. We provide new insights about the direct protective effects of the nutraceutic silybin on hepatocytes mimicking in vitro NAFLD progression.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Nutr Año: 2017 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Nutr Año: 2017 Tipo del documento: Article País de afiliación: Italia