Your browser doesn't support javascript.
loading
Singlet Oxygen during Cycling of the Aprotic Sodium-O2 Battery.
Schafzahl, Lukas; Mahne, Nika; Schafzahl, Bettina; Wilkening, Martin; Slugovc, Christian; Borisov, Sergey M; Freunberger, Stefan A.
Afiliación
  • Schafzahl L; Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
  • Mahne N; Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
  • Schafzahl B; Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
  • Wilkening M; Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
  • Slugovc C; Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
  • Borisov SM; Institute for Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
  • Freunberger SA; Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
Angew Chem Int Ed Engl ; 56(49): 15728-15732, 2017 12 04.
Article en En | MEDLINE | ID: mdl-29024316
ABSTRACT
Aprotic sodium-O2 batteries require the reversible formation/dissolution of sodium superoxide (NaO2 ) on cycling. Poor cycle life has been associated with parasitic chemistry caused by the reactivity of electrolyte and electrode with NaO2 , a strong nucleophile and base. Its reactivity can, however, not consistently explain the side reactions and irreversibility. Herein we show that singlet oxygen (1 O2 ) forms at all stages of cycling and that it is a main driver for parasitic chemistry. It was detected in- and ex-situ via a 1 O2 trap that selectively and rapidly forms a stable adduct with 1 O2 . The 1 O2 formation mechanism involves proton-mediated superoxide disproportionation on discharge, rest, and charge below ca. 3.3 V, and direct electrochemical 1 O2 evolution above ca. 3.3 V. Trace water, which is needed for high capacities also drives parasitic chemistry. Controlling the highly reactive singlet oxygen is thus crucial for achieving highly reversible cell operation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2017 Tipo del documento: Article País de afiliación: Austria

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2017 Tipo del documento: Article País de afiliación: Austria