Your browser doesn't support javascript.
loading
Dethroning the Fano Factor: A Flexible, Model-Based Approach to Partitioning Neural Variability.
Charles, Adam S; Park, Mijung; Weller, J Patrick; Horwitz, Gregory D; Pillow, Jonathan W.
Afiliación
  • Charles AS; Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, U.S.A. adamsc@princeton.edu.
  • Park M; Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, U.K. mijung.park@tuebingen.mpg.de.
  • Weller JP; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, U.S.A. jpweller@uw.edu.
  • Horwitz GD; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, U.S.A. ghorwitz@u.washington.edu.
  • Pillow JW; Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, U.S.A. pillow@princeton.edu.
Neural Comput ; 30(4): 1012-1045, 2018 04.
Article en En | MEDLINE | ID: mdl-29381442
Neurons in many brain areas exhibit high trial-to-trial variability, with spike counts that are overdispersed relative to a Poisson distribution. Recent work (Goris, Movshon, & Simoncelli, 2014 ) has proposed to explain this variability in terms of a multiplicative interaction between a stochastic gain variable and a stimulus-dependent Poisson firing rate, which produces quadratic relationships between spike count mean and variance. Here we examine this quadratic assumption and propose a more flexible family of models that can account for a more diverse set of mean-variance relationships. Our model contains additive gaussian noise that is transformed nonlinearly to produce a Poisson spike rate. Different choices of the nonlinear function can give rise to qualitatively different mean-variance relationships, ranging from sublinear to linear to quadratic. Intriguingly, a rectified squaring nonlinearity produces a linear mean-variance function, corresponding to responses with a constant Fano factor. We describe a computationally efficient method for fitting this model to data and demonstrate that a majority of neurons in a V1 population are better described by a model with a nonquadratic relationship between mean and variance. Finally, we demonstrate a practical use of our model via an application to Bayesian adaptive stimulus selection in closed-loop neurophysiology experiments, which shows that accounting for overdispersion can lead to dramatic improvements in adaptive tuning curve estimation.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Potenciales de Acción / Modelos Neurológicos / Neuronas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neural Comput Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Potenciales de Acción / Modelos Neurológicos / Neuronas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neural Comput Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos