Combining Bootstrap Aggregation with Support Vector Regression for Small Blood Pressure Measurement.
J Med Syst
; 42(4): 63, 2018 Feb 28.
Article
en En
| MEDLINE
| ID: mdl-29488105
Blood pressure measurement based on oscillometry is one of the most popular techniques to check a health condition of individual subjects. This paper proposes a support vector using fusion estimator with a bootstrap technique for oscillometric blood pressure (BP) estimation. However, some inherent problems exist with this approach. First, it is not simple to identify the best support vector regression (SVR) estimator, and worthy information might be omitted when selecting one SVR estimator and discarding others. Additionally, our input feature data, acquired from only five BP measurements per subject, represent a very small sample size. This constitutes a critical limitation when utilizing the SVR technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To overcome these challenges, a fusion with an asymptotic approach (based on combining the bootstrap with the SVR technique) is utilized to generate the pseudo features needed to predict the BP values. This ensemble estimator using the SVR technique can learn to effectively mimic the non-linear relations between the input data acquired from the oscillometry and the nurse's BPs.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Oscilometría
/
Determinación de la Presión Sanguínea
/
Procesamiento de Imagen Asistido por Computador
/
Máquina de Vectores de Soporte
Tipo de estudio:
Diagnostic_studies
Límite:
Humans
Idioma:
En
Revista:
J Med Syst
Año:
2018
Tipo del documento:
Article