Your browser doesn't support javascript.
loading
Quantum Crystallography: Current Developments and Future Perspectives.
Genoni, Alessandro; Bucinský, Lukas; Claiser, Nicolas; Contreras-García, Julia; Dittrich, Birger; Dominiak, Paulina M; Espinosa, Enrique; Gatti, Carlo; Giannozzi, Paolo; Gillet, Jean-Michel; Jayatilaka, Dylan; Macchi, Piero; Madsen, Anders Ø; Massa, Lou; Matta, Chérif F; Merz, Kenneth M; Nakashima, Philip N H; Ott, Holger; Ryde, Ulf; Schwarz, Karlheinz; Sierka, Marek; Grabowsky, Simon.
Afiliación
  • Genoni A; Université de Lorraine, CNRS, Laboratoire LPCT, 1 Boulevard Arago, F-57078, Metz, France.
  • Bucinský L; Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, FCHPT SUT, Radlinského 9, SK-812 37, Bratislava, Slovakia.
  • Claiser N; Université de Lorraine, CNRS, Laboratoire CRM2, Boulevard des Aiguillettes, BP 70239, F-54506, Vandoeuvre-lès-Nancy, France.
  • Contreras-García J; Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Chimie Théorique (LCT), 4 Place Jussieu, F-75252, Paris Cedex 05, France.
  • Dittrich B; Anorganische und Strukturchemie II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
  • Dominiak PM; Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089, Warszawa, Poland.
  • Espinosa E; Université de Lorraine, CNRS, Laboratoire CRM2, Boulevard des Aiguillettes, BP 70239, F-54506, Vandoeuvre-lès-Nancy, France.
  • Gatti C; CNR-ISTM Istituto di Scienze e Tecnologie Molecolari, via Golgi 19, Milano, I-20133, Italy.
  • Giannozzi P; Istituto Lombardo Accademia di Scienze e Lettere, via Brera 28, 20121, Milano, Italy.
  • Gillet JM; Department of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze 208, I-33100, Udine, Italy.
  • Jayatilaka D; Structure, Properties and Modeling of Solids Laboratory, CentraleSupelec, Paris-Saclay University, 3 rue Joliot-Curie, 91191, Gif-sur-Yvette, France.
  • Macchi P; School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
  • Madsen AØ; Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland.
  • Massa L; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
  • Matta CF; Hunter College & the Ph.D. Program of the Graduate Center, City University of New York, New York, USA.
  • Merz KM; Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada.
  • Nakashima PNH; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
  • Ott H; Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada.
  • Ryde U; Département de Chimie, Université Laval, Québec, QC G1V 0A6, Canada.
  • Schwarz K; Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan, 48824, USA.
  • Sierka M; Institute for Cyber Enabled Research, Michigan State University, 567 Wilson Road, Room 1440, East Lansing, Michigan, 48824, USA.
  • Grabowsky S; Department of Materials Science and Engineering, Monash University, Victoria, 3800, Australia.
Chemistry ; 24(43): 10881-10905, 2018 Aug 01.
Article en En | MEDLINE | ID: mdl-29488652
ABSTRACT
Crystallography and quantum mechanics have always been tightly connected because reliable quantum mechanical models are needed to determine crystal structures. Due to this natural synergy, nowadays accurate distributions of electrons in space can be obtained from diffraction and scattering experiments. In the original definition of quantum crystallography (QCr) given by Massa, Karle and Huang, direct extraction of wavefunctions or density matrices from measured intensities of reflections or, conversely, ad hoc quantum mechanical calculations to enhance the accuracy of the crystallographic refinement are implicated. Nevertheless, many other active and emerging research areas involving quantum mechanics and scattering experiments are not covered by the original definition although they enable to observe and explain quantum phenomena as accurately and successfully as the original strategies. Therefore, we give an overview over current research that is related to a broader notion of QCr, and discuss options how QCr can evolve to become a complete and independent domain of natural sciences. The goal of this paper is to initiate discussions around QCr, but not to find a final definition of the field.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Francia