Your browser doesn't support javascript.
loading
Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model.
Folguera-Blasco, Núria; Cuyàs, Elisabet; Menéndez, Javier A; Alarcón, Tomás.
Afiliación
  • Folguera-Blasco N; Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, Bellaterra (Barcelona), Spain.
  • Cuyàs E; Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.
  • Menéndez JA; Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
  • Alarcón T; MetaboStem, Barcelona, Spain.
PLoS Comput Biol ; 14(3): e1006052, 2018 03.
Article en En | MEDLINE | ID: mdl-29543808
Understanding the control of epigenetic regulation is key to explain and modify the aging process. Because histone-modifying enzymes are sensitive to shifts in availability of cofactors (e.g. metabolites), cellular epigenetic states may be tied to changing conditions associated with cofactor variability. The aim of this study is to analyse the relationships between cofactor fluctuations, epigenetic landscapes, and cell state transitions. Using Approximate Bayesian Computation, we generate an ensemble of epigenetic regulation (ER) systems whose heterogeneity reflects variability in cofactor pools used by histone modifiers. The heterogeneity of epigenetic metabolites, which operates as regulator of the kinetic parameters promoting/preventing histone modifications, stochastically drives phenotypic variability. The ensemble of ER configurations reveals the occurrence of distinct epi-states within the ensemble. Whereas resilient states maintain large epigenetic barriers refractory to reprogramming cellular identity, plastic states lower these barriers, and increase the sensitivity to reprogramming. Moreover, fine-tuning of cofactor levels redirects plastic epigenetic states to re-enter epigenetic resilience, and vice versa. Our ensemble model agrees with a model of metabolism-responsive loss of epigenetic resilience as a cellular aging mechanism. Our findings support the notion that cellular aging, and its reversal, might result from stochastic translation of metabolic inputs into resilient/plastic cell states via ER systems.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Senescencia Celular / Biología Computacional / Predicción Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Senescencia Celular / Biología Computacional / Predicción Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: España