Your browser doesn't support javascript.
loading
Additive Manufacturing of Catalytically Active Living Materials.
Saha, Abhijit; Johnston, Trevor G; Shafranek, Ryan T; Goodman, Cassandra J; Zalatan, Jesse G; Storti, Duane W; Ganter, Mark A; Nelson, Alshakim.
Afiliación
  • Saha A; Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States.
  • Johnston TG; Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States.
  • Shafranek RT; Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States.
  • Goodman CJ; Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States.
  • Zalatan JG; Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States.
  • Storti DW; Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States.
  • Ganter MA; Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States.
  • Nelson A; Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States.
ACS Appl Mater Interfaces ; 10(16): 13373-13380, 2018 Apr 25.
Article en En | MEDLINE | ID: mdl-29608267
ABSTRACT
Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Catálisis Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Catálisis Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos