Your browser doesn't support javascript.
loading
Simulation of phase contrast angiography for renal arterial models.
Klepaczko, Artur; Szczypinski, Piotr; Strzelecki, Michal; Stefanczyk, Ludomir.
Afiliación
  • Klepaczko A; Medical Electronics Division, Institute of Electronics, Lodz University of Technology, Lódz, ul. Wólczanska 211/215, 90-924, Lodz, Poland. aklepaczko@p.lodz.pl.
  • Szczypinski P; Medical Electronics Division, Institute of Electronics, Lodz University of Technology, Lódz, ul. Wólczanska 211/215, 90-924, Lodz, Poland.
  • Strzelecki M; Medical Electronics Division, Institute of Electronics, Lodz University of Technology, Lódz, ul. Wólczanska 211/215, 90-924, Lodz, Poland.
  • Stefanczyk L; Department of Diagnostic Imaging, Medical University of Lodz, Lódz, ul. Kopcinskiego 22, 90-153, Lodz, Poland.
Biomed Eng Online ; 17(1): 41, 2018 Apr 16.
Article en En | MEDLINE | ID: mdl-29661193
BACKGROUND: With the development of versatile magnetic resonance acquisition techniques there arises a need for more advanced imaging simulation tools to enable adequate image appearance prediction, measurement sequence design and testing thereof. Recently, there is a growing interest in phase contrast angiography (PCA) sequence due to the capabilities of blood flow quantification that it offers. Moreover, as it is a non-contrast enhanced protocol, it has become an attractive option in areas, where usage of invasive contrast agents is not indifferent for the imaged tissue. Monitoring of the kidney function is an example of such an application. RESULTS: We present a computer framework for simulation of the PCA protocol, both conventional and accelerated with echo-planar imaging (EPI) readout, and its application to the numerical models of kidney vasculatures. Eight patient-specific renal arterial trees were reconstructed following vessel segmentation in real computed tomography angiograms. In addition, a synthetic model was designed using a vascular tree growth simulation algorithm. The results embrace a series of synthetic PCA images of the renal arterial trees giving insight into the image formation and quantification of kidney hemodynamics. CONCLUSIONS: The designed simulation framework enables quantification of the PCA measurement error in relation to ground-truth flow velocity data. The mean velocity measurement error for the reconstructed renal arterial trees range from 1.5 to 12.8% of the aliasing velocity value, depending on image resolution and flip angle. No statistically significant difference was observed between measurements obtained using EPI with a number of echos (NETL) = 4 and conventional PCA. In case of higher NETL factors peak velocity values can be underestimated up to 34%.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arterias / Procesamiento de Imagen Asistido por Computador / Angiografía / Riñón / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biomed Eng Online Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arterias / Procesamiento de Imagen Asistido por Computador / Angiografía / Riñón / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biomed Eng Online Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Polonia