Your browser doesn't support javascript.
loading
Combining fluorescence imaging with Hi-C to study 3D genome architecture of the same single cell.
Lando, David; Basu, Srinjan; Stevens, Tim J; Riddell, Andy; Wohlfahrt, Kai J; Cao, Yang; Boucher, Wayne; Leeb, Martin; Atkinson, Liam P; Lee, Steven F; Hendrich, Brian; Klenerman, Dave; Laue, Ernest D.
Afiliación
  • Lando D; Department of Biochemistry, University of Cambridge, Cambridge, UK.
  • Basu S; Department of Biochemistry, University of Cambridge, Cambridge, UK.
  • Stevens TJ; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
  • Riddell A; Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Wohlfahrt KJ; Department of Biochemistry, University of Cambridge, Cambridge, UK.
  • Cao Y; Department of Biochemistry, University of Cambridge, Cambridge, UK.
  • Boucher W; Department of Biochemistry, University of Cambridge, Cambridge, UK.
  • Leeb M; Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Atkinson LP; Department of Biochemistry, University of Cambridge, Cambridge, UK.
  • Lee SF; Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Hendrich B; Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Klenerman D; Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Laue ED; Department of Biochemistry, University of Cambridge, Cambridge, UK.
Nat Protoc ; 13(5): 1034-1061, 2018 05.
Article en En | MEDLINE | ID: mdl-29674753
ABSTRACT
Fluorescence imaging and chromosome conformation capture assays such as Hi-C are key tools for studying genome organization. However, traditionally, they have been carried out independently, making integration of the two types of data difficult to perform. By trapping individual cell nuclei inside a well of a 384-well glass-bottom plate with an agarose pad, we have established a protocol that allows both fluorescence imaging and Hi-C processing to be carried out on the same single cell. The protocol identifies 30,000-100,000 chromosome contacts per single haploid genome in parallel with fluorescence images. Contacts can be used to calculate intact genome structures to better than 100-kb resolution, which can then be directly compared with the images. Preparation of 20 single-cell Hi-C libraries using this protocol takes 5 d of bench work by researchers experienced in molecular biology techniques. Image acquisition and analysis require basic understanding of fluorescence microscopy, and some bioinformatics knowledge is required to run the sequence-processing tools described here.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cromatina / Cromosomas / Imagen Óptica / Células Madre Embrionarias de Ratones / Conformación Molecular / Biología Molecular Límite: Animals Idioma: En Revista: Nat Protoc Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cromatina / Cromosomas / Imagen Óptica / Células Madre Embrionarias de Ratones / Conformación Molecular / Biología Molecular Límite: Animals Idioma: En Revista: Nat Protoc Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido