Your browser doesn't support javascript.
loading
Strategies for Detecting Biological Molecules on Titan.
Neish, Catherine D; Lorenz, Ralph D; Turtle, Elizabeth P; Barnes, Jason W; Trainer, Melissa G; Stiles, Bryan; Kirk, Randolph; Hibbitts, Charles A; Malaska, Michael J.
Afiliación
  • Neish CD; 1 Department of Earth Sciences, The University of Western Ontario , London, Canada .
  • Lorenz RD; 2 The Johns Hopkins Applied Physics Laboratory , Laurel, Maryland.
  • Turtle EP; 2 The Johns Hopkins Applied Physics Laboratory , Laurel, Maryland.
  • Barnes JW; 3 Department of Physics, University of Idaho , Moscow, Idaho.
  • Trainer MG; 4 NASA Goddard Space Flight Center , Greenbelt, Maryland.
  • Stiles B; 5 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California.
  • Kirk R; 6 United States Geological Survey, Astrogeology Science Center , Flagstaff, Arizona.
  • Hibbitts CA; 2 The Johns Hopkins Applied Physics Laboratory , Laurel, Maryland.
  • Malaska MJ; 5 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California.
Astrobiology ; 18(5): 571-585, 2018 05.
Article en En | MEDLINE | ID: mdl-29718687
ABSTRACT
Saturn's moon Titan has all the ingredients needed to produce "life as we know it." When exposed to liquid water, organic molecules analogous to those found on Titan produce a range of biomolecules such as amino acids. Titan thus provides a natural laboratory for studying the products of prebiotic chemistry. In this work, we examine the ideal locales to search for evidence of, or progression toward, life on Titan. We determine that the best sites to identify biological molecules are deposits of impact melt on the floors of large, fresh impact craters, specifically Sinlap, Selk, and Menrva craters. We find that it is not possible to identify biomolecules on Titan through remote sensing, but rather through in situ measurements capable of identifying a wide range of biological molecules. Given the nonuniformity of impact melt exposures on the floor of a weathered impact crater, the ideal lander would be capable of precision targeting. This would allow it to identify the locations of fresh impact melt deposits, and/or sites where the melt deposits have been exposed through erosion or mass wasting. Determining the extent of prebiotic chemistry within these melt deposits would help us to understand how life could originate on a world very different from Earth. Key Words Titan-Prebiotic chemistry-Solar system exploration-Impact processes-Volcanism. Astrobiology 18, 571-585.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Saturno / Exobiología / Medio Ambiente Extraterrestre Idioma: En Revista: Astrobiology Asunto de la revista: BIOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Saturno / Exobiología / Medio Ambiente Extraterrestre Idioma: En Revista: Astrobiology Asunto de la revista: BIOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Canadá