Your browser doesn't support javascript.
loading
Mechanistic investigations of the Au catalysed C-H bond activations in on-surface synthesis.
Niu, Kaifeng; Lin, Haiping; Zhang, Junjie; Zhang, Haiming; Li, Youyong; Li, Qing; Chi, Lifeng.
Afiliación
  • Niu K; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. chilf@suda.edu.cn hplin@suda.edu.cn.
Phys Chem Chem Phys ; 20(23): 15901-15906, 2018 Jun 13.
Article en En | MEDLINE | ID: mdl-29850686
ABSTRACT
Recently, Au-based nanostructures have attracted extensive interest due to their excellent activities in heterogeneous catalysis. The reaction mechanisms have been interpreted qualitatively by the quantum confinement effect due to the low-coordination of Au atoms in nanostructures. In this work, systematic first-principles calculations were carried out to obtain an in-depth understanding of the origin of C-H bond activations with Au-based catalysts in on-surface synthesis. Combining density functional theory (DFT) calculations and scanning tunneling microscopy (STM) studies, we reveal that the d-band centre and the d-band width of the Au-5dz2 orbital in an energy window of -6.80 to 0.00 eV may serve as theoretical descriptors for the prediction of the activity of Au catalysts in C-H bond activations. This work may therefore inspire further investigations on the design of new catalysts.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article