Your browser doesn't support javascript.
loading
Nanoscale Hydrogenography on Single Magnesium Nanoparticles.
Sterl, Florian; Linnenbank, Heiko; Steinle, Tobias; Mörz, Florian; Strohfeldt, Nikolai; Giessen, Harald.
Afiliación
  • Sterl F; 4th Physics Institute and Research Center SCoPE , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Linnenbank H; 4th Physics Institute and Research Center SCoPE , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Steinle T; 4th Physics Institute and Research Center SCoPE , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Mörz F; 4th Physics Institute and Research Center SCoPE , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Strohfeldt N; 4th Physics Institute and Research Center SCoPE , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Giessen H; 4th Physics Institute and Research Center SCoPE , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
Nano Lett ; 18(7): 4293-4302, 2018 07 11.
Article en En | MEDLINE | ID: mdl-29932678
Active plasmonics is enabling novel devices such as switchable metasurfaces for active beam steering or dynamic holography. Magnesium with its particle plasmon resonances in the visible spectral range is an ideal material for this technology. Upon hydrogenation, metallic magnesium switches reversibly into dielectric magnesium hydride (MgH2), turning the plasmonic resonances off and on. However, up until now, it has been unknown how exactly the hydrogenation process progresses in the individual plasmonic nanoparticles. Here, we introduce a new method, namely nanoscale hydrogenography, that combines near-field scattering microscopy, atomic force microscopy, and single-particle far-field spectroscopy to visualize the hydrogen absorption process in single Mg nanodisks. Using this method, we reveal that hydrogen progresses along individual single-crystalline nanocrystallites within the nanostructure. We are able to monitor the spatially resolved forward and backward switching of the phase transitions of several individual nanoparticles, demonstrating differences and similarities of that process. Our method lays the foundations for gaining a better understanding of hydrogen diffusion in metal nanoparticles and for improving future active nano-optical switching devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2018 Tipo del documento: Article País de afiliación: Alemania