Your browser doesn't support javascript.
loading
High-Pressure Methane Adsorption in Porous Lennard-Jones Crystals.
Kaija, Alec R; Wilmer, Christopher E.
Afiliación
  • Kaija AR; Department of Chemical & Petroleum Engineering , University of Pittsburgh , 3700 O'Hara Street , Pittsburgh , Pennsylvania 15261 , United States.
  • Wilmer CE; Department of Chemical & Petroleum Engineering , University of Pittsburgh , 3700 O'Hara Street , Pittsburgh , Pennsylvania 15261 , United States.
J Phys Chem Lett ; 9(15): 4275-4281, 2018 Aug 02.
Article en En | MEDLINE | ID: mdl-29983053
ABSTRACT
Decades of research have yet to yield porous adsorbents that meet the U.S. Department of Energy's methane storage targets. To better understand why, we calculated high-pressure methane adsorption in 600 000 randomly generated porous crystals, or "pseudomaterials," using atomistic grand canonical Monte Carlo (GCMC) simulations. These pseudomaterials were periodic configurations of Lennard-Jones spheres whose coordinates in space, along with corresponding well depths and radii, were all chosen at random. GCMC simulations were performed for pressures of 35 and 65 bar at a temperature of 298 K. Methane adsorption was compared for all materials against a range of other properties average well depths and radii, number density, helium void fraction, and volumetric surface area. The results reveal structure-property relationships that resemble those previously observed for metal-organic frameworks and other porous materials. We contend that our computational methodology can be useful for discovering useful structure-property relationships related to gas adsorption without requiring experimentally accessible structural data.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos