Your browser doesn't support javascript.
loading
Crystal structure of dimeric human PNPase reveals why disease-linked mutants suffer from low RNA import and degradation activities.
Golzarroshan, Bagher; Lin, Chia-Liang; Li, Chia-Lung; Yang, Wei-Zen; Chu, Lee-Ya; Agrawal, Sashank; Yuan, Hanna S.
Afiliación
  • Golzarroshan B; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China.
  • Lin CL; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China.
  • Li CL; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China.
  • Yang WZ; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China.
  • Chu LY; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China.
  • Agrawal S; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China.
  • Yuan HS; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China.
Nucleic Acids Res ; 46(16): 8630-8640, 2018 09 19.
Article en En | MEDLINE | ID: mdl-30020492
Human polynucleotide phosphorylase (PNPase) is an evolutionarily conserved 3'-to-5' exoribonuclease principally located in mitochondria where it is responsible for RNA turnover and import. Mutations in PNPase impair structured RNA transport into mitochondria, resulting in mitochondrial dysfunction and disease. PNPase is a trimeric protein with a doughnut-shaped structure hosting a central channel for single-stranded RNA binding and degradation. Here, we show that the disease-linked human PNPase mutants, Q387R and E475G, form dimers, not trimers, and have significantly lower RNA binding and degradation activities compared to wild-type trimeric PNPase. Moreover, S1 domain-truncated PNPase binds single-stranded RNA but not the stem-loop signature motif of imported structured RNA, suggesting that the S1 domain is responsible for binding structured RNAs. We further determined the crystal structure of dimeric PNPase at a resolution of 2.8 Å and, combined with small-angle X-ray scattering, show that the RNA-binding K homology and S1 domains are relatively inaccessible in the dimeric assembly. Taken together, these results show that mutations at the interface of the trimeric PNPase tend to produce a dimeric protein with destructive RNA-binding surfaces, thus impairing both of its RNA import and degradation activities and leading to mitochondria disorders.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polirribonucleótido Nucleotidiltransferasa / ARN / Mutación Puntual / Mutación Missense / Estabilidad del ARN / Enfermedades Mitocondriales / Mutación con Pérdida de Función / Mitocondrias Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2018 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polirribonucleótido Nucleotidiltransferasa / ARN / Mutación Puntual / Mutación Missense / Estabilidad del ARN / Enfermedades Mitocondriales / Mutación con Pérdida de Función / Mitocondrias Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2018 Tipo del documento: Article País de afiliación: China