Your browser doesn't support javascript.
loading
Progression of Geographic Atrophy in Age-related Macular Degeneration: AREDS2 Report Number 16.
Keenan, Tiarnan D; Agrón, Elvira; Domalpally, Amitha; Clemons, Traci E; van Asten, Freekje; Wong, Wai T; Danis, Ronald G; Sadda, SriniVas; Rosenfeld, Philip J; Klein, Michael L; Ratnapriya, Rinki; Swaroop, Anand; Ferris, Frederick L; Chew, Emily Y.
Afiliación
  • Keenan TD; Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
  • Agrón E; Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
  • Domalpally A; Fundus Photographic Reading Center, The University of Wisconsin, Madison, Wisconsin.
  • Clemons TE; The Emmes Corporation, Rockville, Maryland.
  • van Asten F; Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
  • Wong WT; Unit on Microglia, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
  • Danis RG; Fundus Photographic Reading Center, The University of Wisconsin, Madison, Wisconsin.
  • Sadda S; Doheny Eye Institute, Los Angeles, California.
  • Rosenfeld PJ; Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.
  • Klein ML; Casey Eye Institute, Portland, Oregon; Devers Eye Clinic, Portland, Oregon.
  • Ratnapriya R; Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
  • Swaroop A; Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
  • Ferris FL; Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
  • Chew EY; Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland. Electronic address: echew@nei.nih.gov.
Ophthalmology ; 125(12): 1913-1928, 2018 12.
Article en En | MEDLINE | ID: mdl-30060980
ABSTRACT

PURPOSE:

To analyze the prevalence, incidence, and clinical characteristics of eyes with geographic atrophy (GA) in age-related macular degeneration (AMD), including clinical and genetic factors affecting enlargement.

DESIGN:

Prospective cohort study within a controlled clinical trial.

PARTICIPANTS:

Age-Related Eye Disease Study 2 (AREDS2) participants, aged 50-85 years.

METHODS:

Baseline and annual stereoscopic color fundus photographs were evaluated for GA presence and area. Analyses included GA prevalence and incidence rates, Kaplan-Meier rates, mixed-model regression, and multivariable analysis of the square root of GA, area adjusted for covariates, including clinical/imaging characteristics and genotype. MAIN OUTCOME

MEASURES:

(1) Presence or development of GA; (2) change in the square root of GA area over time.

RESULTS:

At baseline, 517 eyes (6.2%) of 411 participants (9.8%) had pre-existing GA (without neovascular AMD), with the following characteristics 33% central, 67% noncentral; and the following configurations 36% small, 26% solid/unifocal, 24% multifocal, 9% horseshoe/ring, and 6% indeterminate. Of the remaining 6530 eyes at risk, 1099 eyes (17.3%) of 883 participants developed incident GA without prior neovascular disease during mean follow-up of 4.4 years. The Kaplan-Meier rate of incident GA was 19% of eyes at 5 years. In eyes with incident GA, 4-year risk of subsequent neovascular AMD was 29%. In eyes with incident noncentral GA, 4-year risk of central involvement was 57%. GA enlargement rate (following square root transformation) was similar in eyes with pre-existing GA (0.29 mm/year; 95% confidence interval 0.27-0.30) and incident GA (0.28 mm/year; 0.27-0.30). In the combined group, GA enlargement was significantly faster with noncentrality, multifocality, intermediate baseline size, and bilateral GA (P < 0.0001 for interaction in each case) but not with AREDS2 treatment assignment (P = 0.33) or smoking status (P = 0.05). Enlargement was significantly faster with ARMS2 risk (P < 0.0001), C3 non-risk (P = 0.0002), and APOE non-risk (P = 0.001) genotypes.

CONCLUSIONS:

Analyses of AREDS2 data on natural history of GA provide representative data on GA evolution and enlargement. GA enlargement, which was influenced by lesion features, was relentless, resulting in rapid central vision loss. The genetic variants associated with faster enlargement were partially distinct from those associated with risk of incident GA. These findings are relevant to further investigations of GA pathogenesis and clinical trial planning.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Atrofia Geográfica / Degeneración Macular Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Ophthalmology Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Atrofia Geográfica / Degeneración Macular Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Ophthalmology Año: 2018 Tipo del documento: Article