Your browser doesn't support javascript.
loading
BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export.
Ngeow, Kao Chin; Friedrichsen, Hans J; Li, Linxin; Zeng, Zhiqiang; Andrews, Sarah; Volpon, Laurent; Brunsdon, Hannah; Berridge, Georgina; Picaud, Sarah; Fischer, Roman; Lisle, Richard; Knapp, Stefan; Filippakopoulos, Panagis; Knowles, Helen; Steingrímsson, Eiríkur; Borden, Katherine L B; Patton, E Elizabeth; Goding, Colin R.
Afiliación
  • Ngeow KC; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom.
  • Friedrichsen HJ; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom.
  • Li L; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom.
  • Zeng Z; Medical Research Council Human Genetics Unit & Edinburgh Cancer Research Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, United Kingdom.
  • Andrews S; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom.
  • Volpon L; Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada.
  • Brunsdon H; Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada.
  • Berridge G; Medical Research Council Human Genetics Unit & Edinburgh Cancer Research Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, United Kingdom.
  • Picaud S; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom.
  • Fischer R; Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7FZ Oxford, United Kingdom.
  • Lisle R; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom.
  • Knapp S; Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7FZ Oxford, United Kingdom.
  • Filippakopoulos P; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom.
  • Knowles H; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom.
  • Steingrímsson E; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom.
  • Borden KLB; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, OX3 7HE Oxford, United Kingdom.
  • Patton EE; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.
  • Goding CR; Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada.
Proc Natl Acad Sci U S A ; 115(37): E8668-E8677, 2018 09 11.
Article en En | MEDLINE | ID: mdl-30150413
ABSTRACT
The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import-export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Núcleo Celular / Sistema de Señalización de MAP Quinasas / Glucógeno Sintasa Quinasa 3 / Proteínas Proto-Oncogénicas B-raf / Factor de Transcripción Asociado a Microftalmía Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Núcleo Celular / Sistema de Señalización de MAP Quinasas / Glucógeno Sintasa Quinasa 3 / Proteínas Proto-Oncogénicas B-raf / Factor de Transcripción Asociado a Microftalmía Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido