Your browser doesn't support javascript.
loading
Multifunctional two-dimensional semiconductors SnP3: universal mechanism of layer-dependent electronic phase transition.
Gong, Peng-Lai; Zhang, Fang; Huang, Liang-Feng; Zhang, Hu; Li, Liang; Xiao, Rui-Chun; Deng, Bei; Pan, Hui; Shi, Xing-Qiang.
Afiliación
  • Gong PL; Department of Physics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
J Phys Condens Matter ; 30(47): 475702, 2018 Nov 28.
Article en En | MEDLINE | ID: mdl-30378570
Two-dimensional (2D) semiconductors SnP3 are predicted, from first-principles calculations, to host moderate band gaps (0.72 eV for monolayer and 1.07 eV for bilayer), ultrahigh carrier mobility (∼104 cm2 V-1 s-1 for bilayer), strong absorption coefficients (∼105 cm-1) and good stability. Moreover, the band gap can be modulated from an indirect character into a direct one via strain engineering. For experimental accessibility, the calculated exfoliation energies of monolayer and bilayer SnP3 are smaller than those of the common arsenic-type honeycomb structures GeP3 and InP3. More importantly, a semiconductor-to-metal transition is discovered with the layer number N > 2. We demonstrate, in remarkable contrast to the previous understandings, that such phase transition is largely driven by the correlation between lone-pair electrons of interlayer Sn and P atoms. This mechanism is universal for analogues phase transitions in arsenic-type honeycomb structures (GeP3, InP3 and SnP3).

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2018 Tipo del documento: Article