Your browser doesn't support javascript.
loading
Quantitative cone-beam CT reconstruction with polyenergetic scatter model fusion.
Mason, Jonathan H; Perelli, Alessandro; Nailon, William H; Davies, Mike E.
Afiliación
  • Mason JH; School of Engineering, Institute for Digital Communications, University of Edinburgh, Edinburgh, EH9 3JL, United Kingdom. Author to whom any correspondence should be addressed.
Phys Med Biol ; 63(22): 225001, 2018 11 07.
Article en En | MEDLINE | ID: mdl-30403191
Scatter can account for large errors in cone-beam CT (CBCT) due to its wide field of view, and its complicated nature makes its compensation difficult. Iterative polyenergetic reconstruction algorithms offer the potential to provide quantitative imaging in CT, but they are usually incompatible with scatter contaminated measurements. In this work, we introduce a polyenergetic convolutional scatter model that is directly fused into the reconstruction process, and exploits information readily available at each iteration for a fraction of additional computational cost. We evaluate this method with numerical and real CBCT measurements, and show significantly enhanced electron density estimation and artifact mitigation over pre-calculated fast adaptive scatter kernel superposition (fASKS). We demonstrate our approach has two levels of benefit: reducing the bias introduced by estimating scatter prior to reconstruction; and adapting to the spectral and spatial properties of the specimen.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Tomografía Computarizada de Haz Cónico Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Tomografía Computarizada de Haz Cónico Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2018 Tipo del documento: Article