Your browser doesn't support javascript.
loading
PARP1 is required for preserving telomeric integrity but is dispensable for A-NHEJ.
Harvey, Adam; Mielke, Nicholas; Grimstead, Julia W; Jones, Rhiannon E; Nguyen, Thanh; Mueller, Matthew; Baird, Duncan M; Hendrickson, Eric A.
Afiliación
  • Harvey A; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
  • Mielke N; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
  • Grimstead JW; Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
  • Jones RE; Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
  • Nguyen T; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
  • Mueller M; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
  • Baird DM; Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
  • Hendrickson EA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
Oncotarget ; 9(78): 34821-34837, 2018 Oct 05.
Article en En | MEDLINE | ID: mdl-30410680
ABSTRACT
Poly-ADP ribose polymerase 1 (PARP1) is clinically important because of its synthetic lethality with breast cancer allele 1 and 2 mutations, which are causative for inherited breast and ovarian cancers. Biochemically, PARP1 is a single-stranded DNA break repair protein that is needed for preserving genomic integrity. In addition, PARP1 has been implicated in a veritable plethora of additional cellular pathways and thus its precise contribution(s) to human biology has remained obscure. To help address this deficiency, we utilized gene editing to construct genetically-null PARP1 human cancer cells. We found a minor role for PARP1 in an alternative form of DNA double-strand break (DSB) repair, but only when these cells were deficient for the classical form of DSB repair. Despite being proficient for DSB repair, however, cell cycle progression defects and elevated endogenous DNA damage signaling were observed. These deficiencies were instead linked to telomere defects, where PARP1 -/- cells had short telomeres that co-localized with markers of endogenous DNA damage and were compromised in their ability to escape a telomere-driven crisis. Our data suggest that while PARP1 does not participate significantly in DNA DSB repair itself, it does prevent the incidence of telomeric DSBs, which, in turn, can drive genomic instability.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Oncotarget Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Oncotarget Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos