Your browser doesn't support javascript.
loading
Identification of an essential regulator controlling the production of raw-starch-digesting glucoamylase in Penicillium oxalicum.
Zhang, Mei-Yuan; Zhao, Shuai; Ning, Yuan-Ni; Fu, Li-Hao; Li, Cheng-Xi; Wang, Qi; You, Ran; Wang, Chen-Ying; Xu, Han-Nan; Luo, Xue-Mei; Feng, Jia-Xun.
Afiliación
  • Zhang MY; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • Zhao S; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • Ning YN; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • Fu LH; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • Li CX; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • Wang Q; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • You R; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • Wang CY; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • Xu HN; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • Luo XM; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
  • Feng JX; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People's Republic of China.
Biotechnol Biofuels ; 12: 7, 2019.
Article en En | MEDLINE | ID: mdl-30622649
ABSTRACT

BACKGROUND:

Raw-starch-digesting glucoamylases (RSDGs) from filamentous fungi have great commercial values in starch processing; however, the regulatory mechanisms associated with their production in filamentous fungi remain unknown. Penicillium oxalicum HP7-1 isolated by our laboratory secretes RSDG with suitable properties but at low production levels. Here, we screened and identified novel regulators of RSDG gene expression in P. oxalicum through transcriptional profiling and genetic analyses.

RESULTS:

Penicillium oxalicum HP7-1 transcriptomes in the presence of glucose and starch, respectively, used as the sole carbon source were comparatively analyzed, resulting in screening of 23 candidate genes regulating the expression of RSDG genes. Following deletion of 15 of the candidate genes in the parental P. oxalicum strain ∆PoxKu70, enzymatic assays revealed five mutants exhibiting significant reduction in the production of raw-starch-digesting enzymes (RSDEs). The deleted genes (POX01907, POX03446, POX06509, POX07078, and POX09752), were the first report to regulate RSDE production of P. oxalicum. Further analysis revealed that ∆POX01907 lost the most RSDE production (83.4%), and that POX01907 regulated the expression of major amylase genes, including the RSDG gene POX01356/PoxGA15A, a glucoamylase gene POX02412, and the α-amylase gene POX09352/Amy13A, during the late-stage growth of P. oxalicum.

CONCLUSION:

Our results revealed a novel essential regulatory gene POX01907 encoding a transcription factor in controlling the production of RSDE, regulating the expression of an important RSDG gene POX01356/PoxGA15A, in P. oxalicum. These results provide insight into the regulatory mechanism of fungal amylolytic enzyme production.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Biotechnol Biofuels Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Biotechnol Biofuels Año: 2019 Tipo del documento: Article