Your browser doesn't support javascript.
loading
Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor - Computational approach.
Moradi Kashkooli, Farshad; Soltani, M; Rezaeian, Mohsen; Taatizadeh, Erfan; Hamedi, Mohammad-Hossein.
Afiliación
  • Moradi Kashkooli F; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
  • Soltani M; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, ON, Canad
  • Rezaeian M; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
  • Taatizadeh E; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
  • Hamedi MH; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
Microvasc Res ; 123: 111-124, 2019 05.
Article en En | MEDLINE | ID: mdl-30711547
The solute transport distribution in a tumor is an important criterion in the evaluation of the cancer treatment efficacy. The fraction of killed cells after each treatment can quantify the therapeutic effect and plays as a helpful tool to evaluate the chemotherapy treatment schedules. In the present study, an image-based spatio-temporal computational model of a solid tumor is provided for calculation of interstitial fluid flow and solute transport. Current model incorporates heterogeneous microvasculature for angiogenesis instead of synthetic mathematical modeling. In this modeling process, a comprehensive model according to Convection-Diffusion-Reaction (CDR) equations is employed due to its high accuracy for simulating the binding and the uptake of the drug by tumor cells. Based on the velocity and the pressure distribution, transient distribution of the different drug concentrations (free, bound, and internalized) is calculated. Then, the fraction of killed cells is obtained according to the internalized concentration. Results indicate the dependence of the drug distribution on both time and space, as well as the microvasculature density. Free and bound drug concentration have the same trend over time, whereas, internalized and total drug concentration increases over time and reaches a constant value. The highest amount of concentration occurred in the tumor region due to the higher permeability of the blood vessels. Moreover, the fraction of killed cells is approximately 78.87% and 24.94% after treatment with doxorubicin for cancerous and normal tissues, respectively. In general, the presented methodology may be applied in the field of personalized medicine to optimize patient-specific treatments. Also, such image-based modeling of solid tumors can be used in laboratories that working on drug delivery and evaluating new drugs before using them for any in vivo or clinical studies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Doxorrubicina / Análisis Espacio-Temporal / Modelación Específica para el Paciente / Modelos Biológicos / Neoplasias / Neovascularización Patológica / Antineoplásicos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Microvasc Res Año: 2019 Tipo del documento: Article País de afiliación: Irán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Doxorrubicina / Análisis Espacio-Temporal / Modelación Específica para el Paciente / Modelos Biológicos / Neoplasias / Neovascularización Patológica / Antineoplásicos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Microvasc Res Año: 2019 Tipo del documento: Article País de afiliación: Irán