Your browser doesn't support javascript.
loading
Simultaneous study of molecular and micelle diffusion in a technical microemulsion system by dynamic light scattering.
Knoll, Matthias Samuel Günter; Giraudet, Cédric; Hahn, Christian Joachim; Rausch, Michael Heinrich; Fröba, Andreas Paul.
Afiliación
  • Knoll MSG; Institute of Advanced Optical Technologies - Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen,
  • Giraudet C; Institute of Advanced Optical Technologies - Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen,
  • Hahn CJ; Covestro Deutschland AG, 51365 Leverkusen, Germany. Electronic address: christian.hahn@covestro.com.
  • Rausch MH; Institute of Advanced Optical Technologies - Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen,
  • Fröba AP; Institute of Advanced Optical Technologies - Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen,
J Colloid Interface Sci ; 544: 144-154, 2019 May 15.
Article en En | MEDLINE | ID: mdl-30831548
ABSTRACT

HYPOTHESIS:

The application of dynamic light scattering (DLS) is well-established for measuring diffusion coefficients related to either molecular or translational micelle diffusion. The simultaneous determination of both transport properties should be feasible, but has not been reported in the literature yet. EXPERIMENTS Different diffusion modes present in a microemulsion and selected subsystems consisting of a polyol mixture, a binary surfactant mixture, and carbon dioxide (CO2) were investigated systematically by DLS at temperatures of (314, 333, and 353) K and corresponding pressures of (10, 13, and 16) MPa.

FINDINGS:

Diffusion coefficients related to molecular and translational micelle diffusion could be measured simultaneously and increase with increasing temperature. From the translational diffusion coefficients, an increase in the hydrodynamic diameter of the micelles from their non-swollen to the CO2-swollen state being in agreement with literature data for the same and similar microemulsions was found. The effective diffusion coefficients related to the faster molecular diffusion process only observable in the presence of CO2 are not affected significantly by the surfactant. The time-dependent parts of the recorded intensity correlation functions related to molecular diffusion processes are heterodyne because the scattered light modulated by molecular concentration fluctuations is superimposed with light scattered by the micelles.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2019 Tipo del documento: Article