Your browser doesn't support javascript.
loading
Construction of ZnFe2O4/rGO composites as selective magnetically recyclable photocatalysts under visible light irradiation.
Sun, Qing; Wu, Kun; Zhang, Jian; Sheng, Jiawei.
Afiliación
  • Sun Q; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. Wenzhou Institute of Science and Technology, Zhejiang University of Technology, Wenzhou 325011, People's Republic of China. Zhejiang Shuaikang Electric Co., Ltd, Ningbo 315491, People's Republic of China.
Nanotechnology ; 30(31): 315706, 2019 Aug 02.
Article en En | MEDLINE | ID: mdl-30893671
ABSTRACT
This paper reports on highly active ZnFe2O4/reduced graphene oxide (ZnFe2O4/rGO) nanocomposites synthesized by a modified sol-gel method. The as-prepared samples have been characterized by XRD, TEM, XPS and other detection methods, which demonstrate that ZnFe2O4 nanoparticles (NPs) with a diameter of 15 âˆ¼ 50 nm were densely grown on the rGO substrates. The photocatalytic activities of ZnFe2O4/rGO catalysts were evaluated by the degradation of Methylene blue (MB) under visible light. The results showed that the ZnFe2O4/rGO catalysts had high photocatalytic activity, and the degradation efficiency of MB was almost 100% within 180 min. Moreover, the ZnFe2O4/rGO catalysts also had a great removal effect on Rhodamine B (RhB) and Methyl orange (MO). Mechanistic studies revealed that the rGO acted as a stabilizer to prevent ZnFe2O4 from aggregation and improved the separation of photo-generated electrons. The high efficiency for dye degradation was attributed to the generation of hydroxyl radicals (·OH) via the photochemical decomposition of H2O2 on ZnFe2O4/rGO catalysts, which was responsible for the oxidation of the dyes. Of note, the ZnFe2O4/rGO catalyst maintained an efficiency of over 90% after five cycles. The XRD, XPS and VSM characterization revealed that the ZnFe2O4/rGO catalysts had a stable crystal structure and can be easily separated.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanotechnology Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanotechnology Año: 2019 Tipo del documento: Article