Your browser doesn't support javascript.
loading
Canalicular fluid flow induced by loading waveforms: A comparative analysis.
Kumar, Rakesh; Tiwari, Abhishek Kumar; Tripathi, Dharmendra; Shrivas, Nikhil Vivek; Nizam, Fahad.
Afiliación
  • Kumar R; Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
  • Tiwari AK; Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
  • Tripathi D; National Institute of Technology Uttarakhand, Srinagar 246174, Uttarakhand, India. Electronic address: dtripathi@nituk.ac.in.
  • Shrivas NV; Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
  • Nizam F; Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
J Theor Biol ; 471: 59-73, 2019 06 21.
Article en En | MEDLINE | ID: mdl-30930062
ABSTRACT
Dynamic loading on the bone is beneficial in prevention and cure of bone loss as it encourages osteogenesis (i.e., new bone formation). Loading parameters such as strain magnitude, frequency, cycles, and strain rate (depending on loading waveform) affect the new bone formation. In-vivo studies suggested an optimal and osteogenic range of strain magnitude, frequency, and cycles to elicit the maximum new bone response. Still, there is no consensus on the selection of loading waveform. Animal studies on bone adaptation considered sinusoidal, and non-sinusoidal (e.g., trapezoidal, sawtooth, and triangular) loading waveforms according to physiological loadings (e.g., walking, running, and jumping etc.) without considering the relative effect of these waveforms on the loading-induced mechanical environment. The present study attempts to bridge this gap. Accordingly, this work hypothesizes that bone being a biphasic material (solid and fluid phases) experiences the same strain distribution for the different loading waves of the same amplitude, however, other components of the mechanical environment such as pore-pressure and interstitial fluid motion regulating the bone adaptation may differ. An in-vivo cantilever bending study is selected to substantiate the hypothesis. A poroelastic model is used to estimate the pore pressure and fluid motion developed in mouse tibia subjected to the (i) trapezoidal, (ii) sawtooth, and (iii) triangular bending waves. Furthermore, poroelastic response of pore-pressure and fluid motion induced by these loading waveforms are compared and analyzed. This work also investigates how bone loss associated alterations in the microstructural environment of cortical bone affect the canalicular fluid motion induced by these waveforms. Overall results may be useful in designing optimal biomechanical interventions such as physical exercises to improve the bone health.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteogénesis / Estrés Mecánico / Tibia / Adaptación Fisiológica / Líquido Extracelular / Modelos Biológicos Límite: Animals Idioma: En Revista: J Theor Biol Año: 2019 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteogénesis / Estrés Mecánico / Tibia / Adaptación Fisiológica / Líquido Extracelular / Modelos Biológicos Límite: Animals Idioma: En Revista: J Theor Biol Año: 2019 Tipo del documento: Article País de afiliación: India