Your browser doesn't support javascript.
loading
FunSPU: A versatile and adaptive multiple functional annotation-based association test of whole-genome sequencing data.
Ma, Yiding; Wei, Peng.
Afiliación
  • Ma Y; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
  • Wei P; Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States of America.
PLoS Genet ; 15(4): e1008081, 2019 04.
Article en En | MEDLINE | ID: mdl-31034468
Despite ongoing large-scale population-based whole-genome sequencing (WGS) projects such as the NIH NHLBI TOPMed program and the NHGRI Genome Sequencing Program, WGS-based association analysis of complex traits remains a tremendous challenge due to the large number of rare variants, many of which are non-trait-associated neutral variants. External biological knowledge, such as functional annotations based on the ENCODE, Epigenomics Roadmap and GTEx projects, may be helpful in distinguishing causal rare variants from neutral ones; however, each functional annotation can only provide certain aspects of the biological functions. Our knowledge for selecting informative annotations a priori is limited, and incorporating non-informative annotations will introduce noise and lose power. We propose FunSPU, a versatile and adaptive test that incorporates multiple biological annotations and is adaptive at both the annotation and variant levels and thus maintains high power even in the presence of noninformative annotations. In addition to extensive simulations, we illustrate our proposed test using the TWINSUK cohort (n = 1,752) of UK10K WGS data based on six functional annotations: CADD, RegulomeDB, FunSeq, Funseq2, GERP++, and GenoSkyline. We identified genome-wide significant genetic loci on chromosome 19 near gene TOMM40 and APOC4-APOC2 associated with low-density lipoprotein (LDL), which are replicated in the UK10K ALSPAC cohort (n = 1,497). These replicated LDL-associated loci were missed by existing rare variant association tests that either ignore external biological information or rely on a single source of biological knowledge. We have implemented the proposed test in an R package "FunSPU".
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Genoma / Biología Computacional / Genómica / Estudio de Asociación del Genoma Completo Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Genoma / Biología Computacional / Genómica / Estudio de Asociación del Genoma Completo Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos