Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects.
Sci Transl Med
; 11(490)2019 05 01.
Article
en En
| MEDLINE
| ID: mdl-31043571
Interference with immune cell proliferation represents a successful treatment strategy in T cell-mediated autoimmune diseases such as rheumatoid arthritis and multiple sclerosis (MS). One prominent example is pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), which mediates de novo pyrimidine synthesis in actively proliferating T and B lymphocytes. Within the TERIDYNAMIC clinical study, we observed that the DHODH inhibitor teriflunomide caused selective changes in T cell subset composition and T cell receptor repertoire diversity in patients with relapsing-remitting MS (RRMS). In a preclinical antigen-specific setup, DHODH inhibition preferentially suppressed the proliferation of high-affinity T cells. Mechanistically, DHODH inhibition interferes with oxidative phosphorylation (OXPHOS) and aerobic glycolysis in activated T cells via functional inhibition of complex III of the respiratory chain. The affinity-dependent effects of DHODH inhibition were closely linked to differences in T cell metabolism. High-affinity T cells preferentially use OXPHOS during early activation, which explains their increased susceptibility toward DHODH inhibition. In a mouse model of MS, DHODH inhibitory treatment resulted in preferential inhibition of high-affinity autoreactive T cell clones. Compared to T cells from healthy controls, T cells from patients with RRMS exhibited increased OXPHOS and glycolysis, which were reduced with teriflunomide treatment. Together, these data point to a mechanism of action where DHODH inhibition corrects metabolic disturbances in T cells, which primarily affects profoundly metabolically active high-affinity T cell clones. Hence, DHODH inhibition may promote recovery of an altered T cell receptor repertoire in autoimmunity.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Toluidinas
/
Crotonatos
/
Linfocitos T
/
Mitocondrias
/
Esclerosis Múltiple
Tipo de estudio:
Clinical_trials
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Sci Transl Med
Asunto de la revista:
CIENCIA
/
MEDICINA
Año:
2019
Tipo del documento:
Article
País de afiliación:
Alemania