Your browser doesn't support javascript.
loading
Combination of Enhanced Depth Imaging Optical Coherence Tomography and Fundus Images for Glaucoma Screening.
Chen, Zailiang; Zheng, Xianxian; Shen, Hailan; Zeng, Ziyang; Liu, Qing; Li, Zhuo.
Afiliación
  • Chen Z; School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
  • Zheng X; School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
  • Shen H; School of Computer Science and Engineering, Central South University, Changsha, 410083, China. hn_shl@126.com.
  • Zeng Z; School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
  • Liu Q; School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
  • Li Z; The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
J Med Syst ; 43(6): 163, 2019 May 01.
Article en En | MEDLINE | ID: mdl-31044289
Glaucoma is an eye disease that damages the optic nerve and can lead to irreversible loss of peripheral vision gradually and even blindness without treatment. Thus, diagnosing glaucoma in the early stage is essential for treatment. In this paper, an automatic method for early glaucoma screening is proposed. The proposed method combines structural parameters and textural features extracted from enhanced depth imaging optical coherence tomography (EDI-OCT) images and fundus images. The method first segments anterior the lamina cribrosa surface (ALCS) based on region-aware strategy and residual U-Net and then extracts structural features of the lamina cribrosa, such as lamina cribrosa depth and deformation of lamina cribrosa. In fundus images, scanning lines based on disc center and brightness reduction are used for optic disc segmentation and brightness compensation is utilized for segmenting the optic cup. Afterward, the cup-to-disc ratio (CDR) and textural features are extracted from fundus images. Hybrid features are used for training and classification to screen glaucoma by gcForest in the early stage. The proposed method has given exceptional results with 96.88% accuracy and 91.67% sensitivity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Glaucoma / Tomografía de Coherencia Óptica Tipo de estudio: Diagnostic_studies / Screening_studies Límite: Humans Idioma: En Revista: J Med Syst Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Glaucoma / Tomografía de Coherencia Óptica Tipo de estudio: Diagnostic_studies / Screening_studies Límite: Humans Idioma: En Revista: J Med Syst Año: 2019 Tipo del documento: Article País de afiliación: China