2D MEMS-based high-speed beam-shifting technique for speckle noise reduction and flow rate measurement in optical coherence tomography.
Opt Express
; 27(9): 12551-12564, 2019 Apr 29.
Article
en En
| MEDLINE
| ID: mdl-31052795
In this manuscript, a two-dimensional (2D) micro-electro-mechanical system (MEMS)-based, high-speed beam-shifting spectral domain optical coherence tomography (MHB-SDOCT) is proposed for speckle noise reduction and absolute flow rate measurement. By combining a zigzag scanning protocol, the frame rates of 45.2 Hz for speckle reduction and 25.6 Hz for flow rate measurement are achieved for in-vivo tissue imaging. Phantom experimental results have shown that by setting the incident beam angle to Ï = 4.76° (between optical axis of objective lens and beam axis) and rotating the beam about the optical axis in 17 discrete angular positions, 91% of speckle noise in the structural images can be reduced. Furthermore, a precision of 0.0032 µl/s is achieved for flow rate measurement with the same beam angle, using three discrete angular positions around the optical axis. In-vivo experiments on human skin and chicken embryo were also implemented to further verify the performance of speckle noise reduction and flow rate measurement of MHB-SDOCT.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Opt Express
Asunto de la revista:
OFTALMOLOGIA
Año:
2019
Tipo del documento:
Article