Your browser doesn't support javascript.
loading
BiosyntheticSPAdes: reconstructing biosynthetic gene clusters from assembly graphs.
Meleshko, Dmitry; Mohimani, Hosein; Tracanna, Vittorio; Hajirasouliha, Iman; Medema, Marnix H; Korobeynikov, Anton; Pevzner, Pavel A.
Afiliación
  • Meleshko D; Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia, 19904.
  • Mohimani H; Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, New York 10021, USA.
  • Tracanna V; Department of Computer Science and Engineering, University of California, San Diego, California 92093-0404, USA.
  • Hajirasouliha I; Computational Biology Department, School of Computer Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
  • Medema MH; Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands.
  • Korobeynikov A; Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine of Cornell University, New York, New York 10021, USA.
  • Pevzner PA; Englander Institute for Precision Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.
Genome Res ; 29(8): 1352-1362, 2019 08.
Article en En | MEDLINE | ID: mdl-31160374
Predicting biosynthetic gene clusters (BGCs) is critically important for discovery of antibiotics and other natural products. While BGC prediction from complete genomes is a well-studied problem, predicting BGCs in fragmented genomic assemblies remains challenging. The existing BGC prediction tools often assume that each BGC is encoded within a single contig in the genome assembly, a condition that is violated for most sequenced microbial genomes where BGCs are often scattered through several contigs, making it difficult to reconstruct them. The situation is even more severe in shotgun metagenomics, where the contigs are often short, and the existing tools fail to predict a large fraction of long BGCs. While it is difficult to assemble BGCs in a single contig, the structure of the genome assembly graph often provides clues on how to combine multiple contigs into segments encoding long BGCs. We describe biosyntheticSPAdes, a tool for predicting BGCs in assembly graphs and demonstrate that it greatly improves the reconstruction of BGCs from genomic and metagenomics data sets.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Familia de Multigenes / Metagenoma / Metagenómica / Genes Bacterianos Límite: Humans Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Familia de Multigenes / Metagenoma / Metagenómica / Genes Bacterianos Límite: Humans Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2019 Tipo del documento: Article