Synthesis and evaluation of antiproliferative microtubule-destabilising combretastatin A-4 piperazine conjugates.
Org Biomol Chem
; 17(25): 6184-6200, 2019 06 26.
Article
en En
| MEDLINE
| ID: mdl-31173031
Microtubules are a validated clinical target for the treatment of many cancers. We describe the design, synthesis, biochemical evaluation, and molecular modelling studies of a series of analogues of the microtubule-destabilising agent, combretastatin A-4 (CA-4). Our series of 33 novel compounds contain the CA-4 core structure with modifications to the stilbene linking group, and are predominantly piperazine derivatives. Synthesis was achieved in a two-step process by firstly obtaining the acrylic acid via a Perkin reaction using microwave enhanced synthesis, followed by coupling using either DCC or Mukaiyama's reagent. All target compounds were screened for antiproliferative activity in MCF-7 breast cancer cells. Hydroxyl derivative (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl) propenone (4m) displayed potent antiproliferative activity (IC50 = 190 nM). Two amino-containing derivatives, (E)-3-(3-amino-4-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4q) and (E)-3-(3-amino-4-methoxyphenyl)-1-(4-(p-tolyl)piperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4x), were the most potent with IC50 values of 130 nM and 83 nM respectively. Representative compounds were shown to depolymerise tubulin, induce G2/M arrest and apoptosis in MCF-7 cells but not peripheral blood mononuclear cells, and induce cleavage of the DNA repair enzyme poly ADP ribose polymerase (PARP) in MCF-7 cells. Modelling studies predict that the compounds bind to tubulin within the colchicine-binding site. These compounds are a valuable addition to the library of CA-4 analogues and 4m, 4q and 4x will be developed further as novel, water-soluble molecules targeting microtubules.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Piperazinas
/
Estilbenos
/
Moduladores de Tubulina
/
Antineoplásicos
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Org Biomol Chem
Asunto de la revista:
BIOQUIMICA
/
QUIMICA
Año:
2019
Tipo del documento:
Article
País de afiliación:
Irlanda