Your browser doesn't support javascript.
loading
Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity.
Norton, Briony A; Bending, Gary D; Clark, Rachel; Corstanje, Ron; Dunnett, Nigel; Evans, Karl L; Grafius, Darren R; Gravestock, Emily; Grice, Samuel M; Harris, Jim A; Hilton, Sally; Hoyle, Helen; Lim, Edward; Mercer, Theresa G; Pawlett, Mark; Pescott, Oliver L; Richards, J Paul; Southon, Georgina E; Warren, Philip H.
Afiliación
  • Norton BA; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
  • Bending GD; College of Life and Natural Sciences, University of Derby, Derby, DE22 1GB, United Kingdom.
  • Clark R; School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
  • Corstanje R; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
  • Dunnett N; Centre for Environmental and Agricultural Informatics, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
  • Evans KL; Department of Landscape, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
  • Grafius DR; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
  • Gravestock E; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
  • Grice SM; Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
  • Harris JA; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
  • Hilton S; Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
  • Hoyle H; Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
  • Lim E; School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
  • Mercer TG; Department of Landscape, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
  • Pawlett M; Department of Architecture and Built Environment, UWE Bristol, Bristol, BS16 1QY, United Kingdom.
  • Pescott OL; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
  • Richards JP; Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
  • Southon GE; School of Geography, University of Lincoln, Lincoln, LN6 7TS, United Kingdom.
  • Warren PH; Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
Ecol Appl ; 29(6): e01946, 2019 09.
Article en En | MEDLINE | ID: mdl-31173423
ABSTRACT
There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0-10 cm), but in deeper soils (11-20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents' site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pradera / Biodiversidad Idioma: En Revista: Ecol Appl Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pradera / Biodiversidad Idioma: En Revista: Ecol Appl Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido