Your browser doesn't support javascript.
loading
Metal-Biosurfactant Complexes Characterization: Binding, Self-Assembly and Interaction with Bovine Serum Albumin.
Janek, Tomasz; Rodrigues, Lígia R; Gudiña, Eduardo J; Czyznikowska, Zaneta.
Afiliación
  • Janek T; Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland. tomasz.janek@upwr.edu.pl.
  • Rodrigues LR; Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal. lrmr@deb.uminho.pt.
  • Gudiña EJ; Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal. egudina@deb.uminho.pt.
  • Czyznikowska Z; Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland. zaneta.czyznikowska@gmail.com.
Int J Mol Sci ; 20(12)2019 Jun 12.
Article en En | MEDLINE | ID: mdl-31212764
ABSTRACT
Studies on the specific and nonspecific interactions of biosurfactants with proteins are broadly relevant given the potential applications of biosurfactant/protein systems in pharmaceutics and cosmetics. The aim of this study was to evaluate the interactions of divalent counterions with the biomolecular anionic biosurfactant surfactin-C15 through molecular modeling, surface tension and dynamic light scattering (DLS), with a specific focus on its effects on biotherapeutic formulations. The conformational analysis based on a semi-empirical approach revealed that Cu2+ ions can be coordinated by three amide nitrogens belonging to the surfactin-C15 cycle and one oxygen atom of the aspartic acid from the side chain of the lipopeptide. Backbone oxygen atoms mainly involve Zn2+, Ca2+ and Mg2+. Subsequently, the interactions between metal-coordinated lipopeptide complexes and bovine serum albumin (BSA) were extensively investigated by fluorescence spectroscopy and molecular docking analysis. Fluorescence results showed that metal-lipopeptide complexes interact with BSA through a static quenching mechanism. Molecular docking results indicate that the metal-lipopeptide complexes are stabilized by hydrogen bonding and van der Waals forces. The biosurfactant-protein interaction properties herein described are of significance for metal-based drug discovery hypothesizing that the association of divalent metal ions with surfactin allows its interaction with bacteria, fungi and cancer cell membranes with effects that are similar to those of the cationic peptide antibiotics.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tensoactivos / Complejos de Coordinación / Metales Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tensoactivos / Complejos de Coordinación / Metales Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Polonia